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Consider three vectors a, b, ¢ € C™ where ¢ is a circular convolution of a and b:
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where (£),, is a modulo operator. Define another vectors v, 3, and 7y as the Discrete Fourier Transform (DFT) of a, b, and ¢

n—1 n—1 n—1
1 y 1 y 1 g
4775 5t 4772 id .772 id
aj = NG a;w”, B = NG biw", and ;= NaD c;w,

=0 =0 1=0

27 /n

wherew = € is the primitive nt oot of unity and @ is its complex conjugate. Then the circular convolution property

states that y is obtained by the entry-wise product of & and 3. This is easily seen by rearranging terms in summations.
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