
HoTT Reading Notes

Pierre-Yves Gaillard

Friday 12th February, 2016, 13:11

This text is available at

http://iecl.univ-lorraine.fr/∼Pierre-Yves.Gaillard/HoTT/ReadingNotes

https://github.com/Pierre-Yves-Gaillard/HoTT_Reading_Notes

http://goo.gl/Dz6r8g

This is an informal set of comments on the HoTT Book:

http://homotopytypetheory.org/book

This is a work in progress. John Dougherty’s text

https://github.com/jdoughertyii/hott-exercises

has been most helpful.

Contents

1 Chapter 1 6

1.1 Path induction implies based path induction, §1.12.2 6

1.2 Exercise 1.3 . 7

1.3 Exercise 1.5 . 8

1.4 Exercise 1.6 . 10

1.5 Exercise 1.8 . 11

1.6 Exercise 1.10 . 12

1.7 Exercise 1.13 . 14

1

http://iecl.univ-lorraine.fr/~Pierre-Yves.Gaillard/HoTT/ReadingNotes
https://github.com/Pierre-Yves-Gaillard/HoTT_Reading_Notes
http://goo.gl/Dz6r8g
http://homotopytypetheory.org/book
https://github.com/jdoughertyii/hott-exercises

2 Chapter 2 14

2.1 Theorem 2.7.2 . 14

2.2 Comment after Corollary 2.7.3 . 14

2.3 Theorem 2.7.4 . 15

2.4 Commutative diagram summarizing §§ 2.9 and 2.10 15

2.5 Function Extensionality Axiom (§2.9) 16

2.5.1 Part 1 . 16

2.5.2 Part 2 . 17

2.5.3 Part 3 . 17

2.6 Definition of the map happly in (2.9.2) 18

2.7 Display preceding (2.9.5) . 18

2.8 Lemma 2.9.7 . 19

2.9 Proof of Theorem 2.11.1 . 20

2.10 Proof of Theorem 2.12.5 . 21

2.11 Double induction in §2.13 . 21

2.12 Section 2.14.1 . 22

2.12.1 Use of Theorem 2.7.4 . 22

2.12.2 A general comment . 22

2.13 Exercise 2.7 . 23

2.14 Exercise 2.10 . 24

2.15 Exercise 2.14 . 24

3 Chapter 3 25

3.1 Proof of Lemma 3.1.8 . 25

3.2 Theorem 3.2.2 . 25

3.3 Proof of Lemma 3.3.4 . 26

3.4 Contractibility (§3.11) . 26

3.5 Proof of Lemma 3.11.4 . 27

2

3.6 Proof of Lemma 3.11.8 . 27

3.7 Exercise 3.5 . 27

3.8 Exercise 3.6 . 28

3.9 Exercise 3.7 . 28

3.10 Exercise 3.9 . 29

3.11 Exercise 3.17 . 30

3.12 Exercise 3.18 . 30

4 Chapter 4 31

4.1 Proof of Lemma 4.1.2 . 31

4.2 Proof of Lemma 4.2.11 . 33

4.3 Proof of Lemma 4.7.3 . 34

4.4 Proof of Theorem 4.7.6 . 34

4.5 Proof of Lemma 4.8.1 . 34

4.6 Proof of Lemma 4.8.2 . 35

4.7 Proof of Theorem 4.8.3 . 35

4.8 Proof of Theorem 4.8.4 . 37

4.9 Exercise 4.4 . 38

4.10 Exercise 4.5 . 41

4.11 Exercise 4.6 (iii) . 41

5 Chapter 5 42

5.1 Induction principle for W-types (§5.3) 42

5.2 Second bullet of §5.6 . 43

5.3 Before Remark 5.6.3 . 43

5.4 Displays (5.6.4)–(5.6.7) . 44

5.5 Proof of Theorem 5.8.2 . 45

5.6 Proof of Theorem 5.8.4 (iii) . 45

3

6 Chapter 6 45

6.1 Display (6.2.2) . 45

6.2 Lemma 6.4.1 . 46

6.3 Proof of Corollary 6.4.3 . 46

6.4 Proof of Lemma 6.5.1 . 47

6.5 Section 6.8 . 47

6.6 Section 6.9 . 49

6.7 Notion of quotient (beginning of §6.10) 50

6.8 Proof of Theorem 6.10.6 . 50

6.9 Lemma 6.10.8 . 50

6.10 After Lemma 6.12.1 . 51

6.11 Exercise 6.9 . 52

7 Chapter 7 53

7.1 Theorem 7.1.8 . 53

7.2 First proof of Theorem 7.2.2 . 53

7.3 Lemma 7.2.8 . 54

7.4 Induction principle for n-truncations (§7.3) 54

7.5 Defining quotients via truncations 55

7.6 Proof of Theorem 7.3.2 . 55

7.7 Proof of Theorem 7.3.5 . 56

7.8 Proof of Theorem 7.3.12 . 56

7.9 Paths between cocones . 57

7.10 Definition 7.4.7 . 58

7.11 Equality (7.4.11) . 59

7.12 Definition 7.5.1 . 59

7.13 Proof of Lemma 7.5.10 . 60

7.14 Proof of Lemma 7.5.11 . 60

4

7.15 Comment before Lemma 7.5.12 . 60

7.16 Lemma 7.6.5 . 60

8 Chapter 8 61

8.1 Proof of Theorem 8.2.1 . 61

8.2 Proof of Lemma 8.3.2 and Corollary 8.4.8 61

8.3 Lemma 8.5.9 . 61

8.4 Theorem 8.5.11 . 63

8.5 Proof of Definition 8.6.5 . 63

8.6 Lemma 8.6.10 . 63

8.7 Proof of Theorem 8.6.4 . 64

8.8 Proofs of Theorem 8.8.1 and Corollary 8.8.2 66

8.9 Proof of Corollary 8.8.5 . 66

8.9.1 First part . 66

8.9.2 Second part . 67

8.10 Exercise 8.7 . 67

9 Chapter 9 68

9.1 Theorem 9.2.5 . 68

9.2 Lemma 9.2.8 . 69

9.3 Lemma 9.3.2 . 71

9.4 Proof of Lemma 9.4.9 . 72

10 Chapter 10 73

10.1 A Lemma . 73

10.2 Before Lemma 10.1.1 . 73

10.3 Proof of Lemma 10.1.13 . 74

10.4 The induction principle for acc (§10.3) 75

10.5 Lemma 10.3.7 . 75

5

10.6 Lemma 10.3.8 . 76

10.7 Lemma 10.3.12 . 77

10.8 Theorem 10.4.4 . 77

11 Chapter 11 77

11.1 The definition of Q (§11.1) . 77

11.2 §11.2.1 . 78

11.3 Corollary to Lemma 11.2.2 . 78

11.4 Proof of Theorem 11.2.12 . 78

12 Appendix A 78

1 Chapter 1

1.1 Path induction implies based path induction, §1.12.2

Let us show that path induction implies based path induction. Let A be a type,
let a : A, let

C0 :
∏
x:A

(a = x)→ U ,

and let c0 : C0(a, refla). We must find an

f :
∏
x:A

∏
p:a=x

C0(x, p) (1)

such that
f(a, refla) ≡ c0. (2)

Define D :
∏

x,y:A(x = y)→ U by

D(x, y, p) :≡
∏

C:
∏

z:A(x=z)→U

C(x, reflx)→ C(y, p) (3)

and d :
∏

x:AD(x, x, reflx) by
d(x,C, c) :≡ c. (4)

6

By path induction we get a

g :
∏
x,y:A

∏
p:x=y

D(x, y, p) (5)

such that
g(x, x, reflx) ≡ d(x) (6)

for all x : A. We set
f(x, p) :≡ g(a, x, p, C0, c0) (7)

for x : A and p : a = x.

We prove (1). Let x : A, p : a = x. We must show f(x, p) : C0(x, p). By (7) it
suffices to show

g(a, x, p, C0, c0) : C0(x, p). (8)

Judgment (5) implies g(a, x, p) : D(a, x, p). Now (3) implies (8). This proves (1).

To prove (2), observe

f(a, refla)
(a)
≡ g(a, a, refla, C0, c0)

(b)
≡ d(a, C0, c0)

(c)
≡ c0,

where (a) follows from (7), (b) follows from (6), and (c) follows from (4). �

1.2 Exercise 1.3

Statement. Derive the induction principle for products indA×B, using only the
projections and the propositional uniqueness principle uniqA×B. Verify that the
definitional equalities are valid. Generalize uniqA×B to Σ-types, and do the same
for Σ-types. (This requires concepts from Chapter 2.)

Solution. It suffices to handle Σ-types.

(a) We assume that, for all type family B : A→ U we have a map

pr1 :

(∑
a:A

B(a)

)
→ A

and a dependent function

pr2 :
∏

x:
∑

a:AB(a)

B(pr1(x))

7

satisfying
pr1(a, b) ≡ a, pr2(a, b) ≡ b (9)

for all a : A and all b : B(a).

(b) We also assume that, for all type family B : A → U we have a dependent
function

uniq∑
a:AB(a) :

∏
x:
∑

a:AB(a)

(
(pr1(x), pr2(x)) = x

)
such that

uniq∑
a:AB(a)(a, b) ≡ refl(a,b) (10)

for all a : A and all b : B(a).

(c) We define

ind∑
a:AB(a) :

∏
C:(

∑
a:AB(a))→U

∏
a:A

∏
b:B(a)

C((a, b))

→ ∏
x:
∑

a:AB(a)

C(x)

thanks to the transport principle, which is indeed a concept from Chapter 2, by

ind∑
a:AB(a)(C, g, x) :≡

(
uniq∑

a:AB(a)(x)
)
?

(
g
(
pr1(x)

)(
pr2(x)

))
. (11)

(d) We must prove
ind∑

a:AB(a)(C, g, (a, b)) ≡ g(a)(b)

for all a : A and all b : B(a). But this follows from (9), (10) and (11). �

1.3 Exercise 1.5

Statement. Show that if we define A + B :≡
∑

x:2 rec2(U , A,B, x), then we can
give a definition of indA+B for which the definitional equalities stated in §1.7 hold.

Solution. Recall that we have

rec2 :
∏
C:U

C → C → 2→ C, rec2(C, c0, c1, 02) :≡ c0, rec2(C, c0, c1, 12) :≡ c1.

We define inl : A → A + B by inl(a) :≡ (02, a), and we define inr similarly. Let
C : (A+B)→ U be given, and put

A′ :≡
∏
a:A

C(inl(a)), B′ :≡
∏
b:B

C(inr(b)).

8

We must define
indA+B(C) : A′ → B′ →

∏
x:A+B

C(x).

Let g0 :A′, g1 :B′ be given. We must define

indA+B(C, g0, g1) :
∏

x:A+B

C(x).

Set T :≡ rec2(U , A,B) : 2→ U . We define D : 2→ U by

D(n) :≡
∏
u:T (n)

C((n, u)).

Note that D(02) ≡ A′ and D(12) ≡ B′. Recall that

ind2(D) : D(02)→ D(12)→
∏
n:2

D(n).

In particular we have

ind2(D, g0, g1) :
∏
n:2

∏
u:T (n)

C((n, u))

with
ind2(D, g0, g1)(02) :≡ g0, ind2(D, g0, g1)(12) :≡ g1.

Since

ind∑
n:2 T (n)

(C) :

∏
n:2

∏
u:T (n)

C((n, u))

→ ∏
x:A+B

C(x),

we can put
indA+B(C, g0, g1) :≡ ind∑

n:2 T (n)
(C, ind2(D, g0, g1)).

We must check
indA+B(C, g0, g1, (02, a)) ≡ g0(a), (12)

indA+B(C, g0, g1, (12, b)) ≡ g1(b). (13)

We have

indA+B(C, g0, g1, (02, a)) ≡ ind∑
n:2 T (n)

(
C, ind2(D, g0, g1), (02, a)

)
≡ ind2(D, g0, g1)(02)(a)

≡ g0(a),

the three definitional equalities following respectively from the definitions of the
dependent functions

indA+B, ind∑
n:2 T (n)

, ind2.

This proves (12). The proof of (13) is similar. �

9

1.4 Exercise 1.6

Statement. Show that if we define A × B :≡
∏

x:2 rec2(U , A,B, x), then we can
give a definition of indA×B for which the definitional equalities stated in §1.5 hold
propositionally (i.e. using equality types). (This requires the function extension-
ality axiom, which is introduced in §2.9.)

Solution. As above set T :≡ rec2(U , A,B), so that T : 2→ U and

A×B :≡
∏
n:2

T (n).

Recall that we have
ind2(T) : A→ B → A×B.

For a :A, b :B we abbreviate ind2(T, a, b) by (a, b); in particular we have

(a, b) : A×B, (a, b)(02) ≡ a, (a, b)(12) ≡ b.

Let C : (A×B)→ U . We must define

indA×B(C) :

(∏
a:A

∏
b:B

C((a, b))

)
→

∏
u:A×B

C(u).

Let u : A×B and define D : 2→ U by

D(n) :≡
((
u(02), u(12)

)
(n) = u(n)

)
,

and recall that
ind2(D) : D(02)→ D(12)→

∏
n:2

D(n),

and that

funext :

(∏
n:2

D(n)

)
→
((
u(02), u(12)

)
= u

)
.

Setting α :≡ ind2(D, reflu(02), reflu(12)), we get

α :
∏
n:2

D(n), funext(α) :
(
u(02), u(12)

)
= u,

funext(α)? : C
((
u(02), u(12)

))
→ C(u).

In particular we can set

indA×B(C, g, u) :≡ funext(α)?

(
g
(
u(02)

)(
u(12)

))
.

10

To show that the definitional equalities stated in §1.5 hold propositionally, we
assume u ≡ (a, b). In particular we have

α :
∏
n:2

(
(a, b)(n) = (a, b)(n)

)
.

It is easy to prove α(n) = refl(a,b)(n) by induction. This gives

indA×B(C, g, (a, b)) = g(a)(b),

as required. �

1.5 Exercise 1.8

Statement. Define multiplication and exponentiation using recN. Verify that

(N,+, 0,×, 1)

is a semiring using only indN. You will probably also need to use symmetry and
transitivity of equality, Lemmas 2.1.1 and 2.1.2.

Solution. We put

mn :≡ recN(N→ N , λn.0 , λm.λg.λn.n+ g(n) , m , n),

nm :≡ recN(N→ N , λn.1 , λm.λg.λn.ng(n) , m , n).

We omit the verification of the fact that (N,+, 0,×, 1) is a semiring. �

For the reader’s convenience we briefly recall the definition of the recursor for
N:

recN :
∏
C:U

C → (N→ C → C)→ N→ C,

recN(C, c0, cs, 0) :≡ c0,

recN(C, c0, cs, succ(n)) :≡ cs(n, recN(C, c0, cs, n)).

11

1.6 Exercise 1.10

Statement. Show that the Ackermann function ack : N → N → N is definable
using only recN satisfying the following equations:

ack(0, n) ≡ succ(n), (14)

ack(succ(m), 0) ≡ ack(m, 1), (15)

ack(succ(m), succ(n)) ≡ ack(m, ack(succ(m), n)). (16)

Solution. I have used John Dougherty’s text

https://github.com/jdoughertyii/hott-exercises

We try to solve Equation

ack :≡ recN(C, c0, cs) (17)

for
C : U , c0 : C, cs : N→ C → C.

We get C :≡ (N→ N). In view of (14), evaluation of (17) at 0 gives c0 ≡ succ, so
that we get

ack :≡ recN(N→ N, succ, cs). (18)

Let i : N, f : N→ N. It suffices to solve Equation

cs(i, f) :≡ recN(D(i, f), d0(i, f), ds(i, f)) (19)

for
D(i, f) : U , d0(i, f) : D(i, f), ds(i, f) : N→ D(i, f)→ D(i, f).

As we have cs(i, f) : N → N and recN(D(i, f), d0(i, f), ds(i, f)) : N → D(i, f), we
set D(i, f) :≡ N, so that we get

cs(i, f) :≡ recN(N, d0(i, f), ds(i, f)) (20)

with
d0(i, f) : N, ds(i, f) : N→ N→ N.

We have
ack(succ(m))

(a)
≡ recN(N→ N, succ, cs, succ(m))

≡ cs(m, recN(N→ N, succ, cs,m))

12

https://github.com/jdoughertyii/hott-exercises

(b)
≡ cs(m, ack(m))

(c)
≡ recN(N, d0(m, ack(m)), ds(m, ack(m))),

where (a) and (b) follow from (18), and (c) follows from (20). In view of (15),
evaluating

ack(succ(m)) ≡ recN(N, d0(m, ack(m)), ds(m, ack(m))) (21)

at 0 gives d0(m, ack(m)) ≡ ack(m)(1), prompting us to set d0(i, f) :≡ f(1), so that
(20) becomes

cs(i, f) :≡ recN(N, f(1), ds(i, f)) (22)

and (21) becomes

ack(succ(m)) ≡ recN
(
N, ack(m, 1), ds

(
m, ack(m)

))
. (23)

We have
ack(m)

(
ack(succ(m), n)

)
(a)
≡ ack(succ(m), succ(n))

(b)
≡ recN

(
N, ack(m, 1), ds(m, ack(m)), succ(n)

)
≡ ds

(
m, ack(m)

)(
n, recN

(
N, ack(m, 1), ds

(
m, ack(m)

)
, n
))

(c)
≡ ds

(
m, ack(m)

)(
n, ack

(
succ(m), n

))
,

where (a) follows from (16), and (b) and (c) follow from (23). This prompts us to
set ds(i, f)(x, y) :≡ f(y). Abbreviating ds(i, f) by f ′, we get

ack :≡ recN(N→ N, succ, cs)

with
cs(i, f) ≡ recN(N, f(1), f ′)

and
i : N, f : N→ N, f ′ : N→ N→ N, f ′(x, y) :≡ f(y),

that is

ack :≡ recN
(
N→ N, succ, λi.λf.recN

(
N, f(1), λx.λy.f(y)

))
. �

13

1.7 Exercise 1.13

Statement. Using propositions-as-types, derive the double negation of the principle
of excluded middle, i.e. prove not (not (P or not P)).

Solution. For any types A,B we define f :
((
A + (A → B)

)
→ B

)
→ B by

f(g) :≡ (g ◦ inr)(g ◦ inl). Putting B :≡ 0 gives the desired result. �

2 Chapter 2

2.1 Theorem 2.7.2

Recall that P : A→ U is a type family over a type A, and that w,w′ :
∑

a:A P (a).
Theorem 2.7.2 can also be stated as follows:

The map

(w = w′)→
∑

p:pr1(w)=pr1(w
′)

(
p?(pr2(w)) = pr2(w

′)
)

defined
r 7→ (appr1

(r), apdpr2
(r))

admits an inverse

pair= :

 ∑
p:pr1(w)=pr1(w

′)

(
p?(pr2(w)) = pr2(w

′)
)→ (w = w′). (24)

We often write pair=P for pair= to stress the dependence on the type family
P : A→ U .

2.2 Comment after Corollary 2.7.3

In the above context, we have the propositional computation rules

appr1
(pair=(p, q)) = p,

apdpr2
(pair=(p, q)) = q

14

for (p, q) :
∑

p:pr1(w)=pr1(w
′)(p?(pr2(w)) = pr2(w

′)), and the propositional uniqueness
principle

r = pair=(appr1
(r), apdpr2

(r))

for r : w = w′.

2.3 Theorem 2.7.4

We wish to rewrite the last display of Theorem 2.7.4 in a slightly more explicit
way. Recall that we have type families P : A→ U and Q : (

∑
a:A P (a))→ U . Let

us set
Q′(a) :≡

∑
u:P (a)

Q(a, u)

for a : A, let us abbreviate transport by t, and let us write pair=P instead of pair=

(see (24) above) to emphasize the fact that this operation is taken with respect to
the type family P : A → U . Recall that p : x = y is a path in A, that u : P (x)
and z : Q(x, u), so that (u, z) : Q′(x). Here is the rewriting:

tQ
′
(p, (u, z)) =

(
tP (p, u), tQ

(
pair=P

(
p, refltP (p,u)

)
, z

))
. (25)

The key step to check that the above equality is well-typed is the judgment

pair=P

(
p, refltP (p,u)

)
: (x, u) =∑

a:A P (a)

(
y, tP (p, u)

)
.

For the reader’s convenience, we rewrite (24) more explicitly as

pair=P :

 ∑
p:pr1(w)=pr1(w

′)

(
tP (p, pr2(w)) = pr2(w

′)
)→ (w = w′),

so that we have pair=P (p, q) : w = w′ if and only if

p : pr1(w) = pr1(w
′) and q : tP (p, pr2(w)) = pr2(w

′).

2.4 Commutative diagram summarizing §§ 2.9 and 2.10

Let f, g :
∏

a:AB(a), where B : A→ U is a type family. Recall that

(f ∼ g) :≡
∏
a:A

(f(a) = g(a)).

15

For a : A we have the commutative diagram

f = g

ev′a

happly // f ∼ g

eva

~~

funext
oo

f(a) = g(a)

where eva is the obvious map (ev stands for evaluation), and ev′a is defined by
ev′a :≡ eva ◦ happly.

For A,B : U we have the commutative diagram

A = B

transportX 7→X

��

idtoeqv // A ' B

pr1

��

ua
oo

A→ B

The key point is of course the fact that, in each of the two above diagrams, the
horizontal maps are inverses.

2.5 Function Extensionality Axiom (§2.9)

The comments below have been inspired by Lemma 6.3.2 in the HoTT Book.

2.5.1 Part 1

Let B : A → U be a type family over a type A, let f, g :
∏

a:AB(a) be two
dependent functions, and let h : f ∼ g be a homotopy from f to g. Define
h′ :

∏
a:A(I → B(a)) by

h′(a, 0I) :≡ f(a), h′(a, 1I) :≡ g(a), h′(a, seg) := h(a). (26)

(I is the interval, with the three constructors 0I : I, 1I : I, seg : 0I = 1I . See
beginning of §6.3 in the book.) Next define h′′ : I →

∏
a:AB(a) by

h′′(i, a) :≡ h′(a, i).

16

Let a : A. We claim

happly(h′′(seg), a) = h′(a, seg). (27)

Let p : i = j be a path in I. It suffices to show happly(h′′(p), a) = h′(a, p), and
even, by path induction, happly(h′′(refli), a) = h′(a, refli). But we have

happly(h′′(refli), a) = happly(reflf , a) = reflf(a) = h′(a, refli).

This proves (27). Obviously (26) and (27) imply

happly(h′′(seg), a) = h(a). (28)

2.5.2 Part 2

We denote the function extensionality axiom by FEA, and we introduce an axiom
which we call FEA′ and which is clearly implied by FEA, and we’ll prove in Part 3
that FEA′ implies FEA. FEA′ says that for all loop ` : f = f we have

FEA′ :

(∏
a:A

(happly(`, a) = reflf(a))

)
→ (` = reflf). (29)

In Part 2 we admit FEA (and thus FEA′). Let h : f ∼ g. We claim

funext(h) = h′′(seg) (30)

Let a : A. By FEA and path induction we can assume

h(a) ≡ reflf(a). (31)

By FEA again, it suffices to show

reflf(a) = happly(h′′(seg), a).

But this follows from (31) and (28). This proves (30).

2.5.3 Part 3

Recall that FEA stands for “function extensionality axiom” and FEA′ is defined in
(29). We prove

FEA′ implies FEA (32)

17

as follows. We assume FEA′. Let h, h′, h′′ be as in Part 1, and set

funext(h) :≡ h′′(seg). (33)

We claim
funext ◦ happly = idf=g. (34)

Let
h :≡ happly(reflf). (35)

By path induction and (33) it suffices to show h′′(seg) = reflf . Let a : A. By FEA′

it even suffices to show happly(h′′(seg), a) = reflf(a). But this follows from (28) and
(35). This proves (34). We claim

happly ◦ funext = idf∼g. (36)

Let h : f ∼ g. We must show happly(funext(h)) = h. Let a : A. By FEA′ it suffices
to show happly(funext(h), a) = h(a). But this follows from (33) and (28). This
proves (36). Now (34) and (36) imply (32).

2.6 Definition of the map happly in (2.9.2)

The map
happly : (f = g)→

∏
a:A

(
f(a) = g(a)

)
for f, g :

∏
x:AB(x) is defined in the obvious way by path induction. If

e :
∏
x:A

(∏
y:A

B(y)

)
→ B(x)

is the evaluation, i.e. e(x)(f) :≡ f(x), then we have, again by path induction,

happly(p)(x) = ape(x)(p)

for p : f = g and x : A.

2.7 Display preceding (2.9.5)

Note that (p−1)?(a) and transportA(p−1, a) designate the same object, and that we
have

pair=(p−1, refl(p−1)?(a)) : (x2, a) =∑
x:X A(x)

(
x1, (p

−1)?(a)
)
.

18

2.8 Lemma 2.9.7

In this Section we abbreviate transport by t. Let

A : X → U , B :
∏
x:X

A(x)→ U , B̂ :

(∑
x:X

A(x)

)
→ U , B′ : X → U

be type families such that B̂(w) :≡ B(pr1(w), pr2(w)) for all w :
∑

x:X A(x), and

B′(x) :≡
∏
a:A(x)

B(x, a)

for all x : X; let

p : x =X y, f : B′(x), g : B′(y), p? :≡ tA(p);

and define
h :

∏
a:A(x)

B(y, p?a)

by setting
h(a) :≡ tB̂

(
pair=A

(
p, reflp?a

)
, f(a)

)
(37)

for all a : A(x).

Here are more details about (37): We write pair=A for pair= to stress the fact
that the pairing is taken with respect to the type family A. Recall that pair= is
defined in (24) p. 14, and note that we have

pair=A
(
p, reflp?a

)
: (x, a) =∑

x:X A(x) (y, p?a).

Claim: The maps (
tB
′
(p, f) ∼ g

)
u //

(
h ∼ g ◦ p?

)
v

oo (38)

defined below are inverses.

Proof. We define k : tB
′
(p, f) ◦ p? ∼ h by induction on the path p : x = y. For

a′ : A(y) let
r(a′) : tB

′
(p, f)(a′) = tB

′
(p, f)

(
p? (p−1)? a

′
)

and
s(a′) : g

(
p? (p−1)? a

′
)

= g(a′)

19

be the obvious paths. We now define u and v in (38) as follows. For α : tB
′
(p, f) ∼ g

and a : A(x) we define u(α)(a) : h(a) = g(p?a) by

u(α)(a) :≡ k(a)−1·α(p?a),

and for β : h ∼ g ◦ p? we define v(β) : tB
′
(p, f) ∼ g by

v(β)(a′) :≡ r(a′)·k((p−1)? a′)·β((p−1)? a′)·s(a′).
The claim is easily proved by induction on the path p : x = y. �

The path

r(a′)·k((p−1)? a′)·β((p−1)? a′)·s(a′) : tB
′
(p, f)(a′) = g(a′)

above is the composite of the paths

tB
′
(p, f)(a′)

r(a′)
tB
′
(p, f)

(
p? (p−1)? a

′
)

k((p−1)?a′)
h
(

(p−1)? a
′
)

β((p−1)?a′)
g
(
p? (p−1)? a

′
)

s(a′)
g(a′).

2.9 Proof of Theorem 2.11.1

Let f : A→ B be invertible, and let a, a′ : A. We must show that

apf : (a = a′)→ (fa = fa′)

is invertible.

Step 1. (This step is the the same as in the book; I spell it out for the reader’s
convenience.) Let g : B → A be an inverse to f , let β : g ◦ f = idA, and define

ϕ : (gfa = gfa′)→ (a = a′) by ϕ(q) :≡ β−1a ·q·βa′ .
Note, as in the book, that the equality ϕ ◦ apg ◦ apf = ida=a′ follows from the
functoriality of ap and the naturality of homotopies, Lemmas 2.2.2 and 2.4.3.
(Here apg : (fa = fa′)→ (gfa = gfa′).)

Step 2. Since ϕ is invertible (see Example 2.4.8 in the book), apg ◦ apf is also
invertible, and so is, by symmetry, apf ◦ apg. Exercise 4.5 (see §4.10 p. 41) implies
that apf and apg are invertible. �

20

2.10 Proof of Theorem 2.12.5

The equality
encode(inl(a), decode(inl(a), c)) = c

for c : a0 = a can be proved by based path induction. �

2.11 Double induction in §2.13

Claim. For any type family C : N→ N→ U , any dependent functions

g :
∏
n:N

C(0, n), h :
∏
m:N

C(succ(m), 0),

k :
∏
m,n:N

C(m,n)→ C(succ(m), succ(n)),

there is a dependent function f :
∏

m,n:NC(m,n) satisfying

f(0) ≡ g, f(succ(m), 0) ≡ h(m), f(succ(m), succ(n)) ≡ k(m,n, f(m,n))

for all m,n : N.

Proof. Define C ′ : N→ U by

C ′(m) :≡
∏
n:N

C(m,n).

Let m : N and x : C ′(m), and define cs(m,x) : C ′(succ(m)) by

cs(m,x)(0) :≡ h(m), cs(m,x)(succ(n)) :≡ k(m,n, x(n)).

As
cs :

∏
m:N

C ′(m)→ C ′(succ(m)),

we can define f :
∏

m:N C ′(m) by

f(0) :≡ g, f(succ(m)) :≡ cs(m, f(m)).

We leave the end of the proof to the reader. �

21

2.12 Section 2.14.1

2.12.1 Use of Theorem 2.7.4

We apply Theorem 2.7.4 (see §2.3 p. 15) to §2.14.1 of the book by defining P :
U → U by P (A) :≡ (A→ A→ A), by defining

Q :

(∑
A:U

P (A)

)
→ U

by
Q(A,m) :≡

∏
x,y,z:A

(
m(x,m(y, z)) = m(m(x, y), z)

)
,

and by defining Q′ : U → U by

Q′(A) :≡
∑

m:P (A)

Q(A,m).

In the notation of §2.3 p. 15 the last display of Theorem 2.7.4 (see (25) p. 15) now
reads

tQ
′
(p, (m, a)) =

(
tP (p,m), tQ

(
pair=P

(
p, refltP (p,m)

)
, a

))
with p :≡ ua(e). �

2.12.2 A general comment

The main purpose of §2.14.1 is to obtain the formulas

m′(b1, b2) = e(m(e−1(b1), e
−1(b2)))

and
m′(m′(b1, b2), b3) = e(m(e−1(m′(b1, b2)), e

−1(b3)))

= e(m(e−1(e(m(e−1(b1), e
−1(b2)))), e

−1(b3)))

= e(m(m(e−1(b1), e
−1(b2)), e

−1(b3)))

= e(m(e−1(b1),m(e−1(b2), e
−1(b3))))

= e(m(e−1(b1), e
−1(e(m(e−1(b2), e

−1(b3))))))

= e(m(e−1(b1), e
−1(m′(b2, b3))))

= m′(b1,m
′(b2, b3)).

22

(We refer the reader to the book for the precise notation. The above chain of
equalities is preceded by the sentence “Moreover, though we do not show the proof,
one can calculate that the induced proof that m′ is associative . . . is equal to a
function sending b1, b2, b3 : B to a path given by the following steps”. The main
ingredient is Theorem 2.7.4 — see §2.3 p. 15.)

It seems to me one could argue as follows: state the above two formulas, check
that they are well-typed, check that they hold when A ≡ B and p is reflexivity,
conclude by path induction that they hold in general.

2.13 Exercise 2.7

Statement. State and prove a generalization of Theorem 2.6.5 from cartesian prod-
ucts to Σ-types.

Solution. We shall freely use the proof of Theorem 2.7.2 (see §2.1 p. 14). Let
B : A→ U , and let us denote respectively by α and β the dependent functions f
and g in the proof of Theorem 2.7.2:

∏
z,w:

∑
a:AB(a)

(z = w)
α //

∑
p:pr1(z)=pr1(w)

p?pr2(z) = pr2(w)
β
oo

 .

Note that the expression β(z, w) has the same meaning as the expression pair=

introduced in the book just before Theorem 2.7.4. Let B′ : A′ → U and set
similarly

∏
z′,w′:

∑
a′:A′ B

′(a′)

(z′ = w′)
α′ //

∑
p′:pr1(z

′)=pr1(w
′)

p′?pr2(z
′) = pr2(w

′)
β′
oo

 .

Let g : A→ A′, h :
∏

a:A B(a)→ B′(g(a)). Cleary, there is a map

f :

(∑
a:A

B(a)

)
→
∑
a′:A′

B′(a′)

satisfying f(a, b) ≡ (g(a), h(a, b)) for all a : A and all b : B(a).

Let

z, w :
∑
a:A

B(a); p : pr1(z) = pr1(w); q : p?pr2(z) = pr2(w).

23

We claim
apf
(
β(z, w, p, q)

)
= β′

(
f(z), f(w), apg(p), apdh(q)

)
. (39)

Proof of (39). For z and w as above, and r : z = w set

p(r) :≡ pr1(α(z, w, r)), q(r) :≡ pr2(α(z, w, r)).

Then we can prove

apf
(
β(z, w, p(r), q(r))

)
= β′

(
f(z), f(w), apg(p(r)), apdh(q(r))

)
(40)

by induction on r. Clearly (40) implies (39). �

2.14 Exercise 2.10

The result of Exercise 2.10 can be stated as follows:

If B : A→ U and C : (
∑

a:AB(a))→ U are type families, then the maps∑
a:A

∑
b:B(a)

C((a, b))

 f //

 ∑
z:
∑

a:AB(a)

C(z)


g

oo

defined by
f(a, b, c) :≡ ((a, b), c), g(z, c) :≡ (pr1z, pr2z, c)

are inverses.

The proof is straightforward.

2.15 Exercise 2.14

Statement. Suppose we add to type theory the equality reflection rule which says
that if there is an element p : x = y, then in fact x ≡ y. Prove that for any
p : x = x we have p ≡ reflx. (This implies that every type is a set in the sense to
be introduced in §3.1; see §7.2.)

Solution. Let p : x = y. We have p : x = x by the equality reflection rule, and
p = reflx by path induction. �

24

3 Chapter 3

3.1 Proof of Lemma 3.1.8

Recall the statement:

If A is a set (that is, isSet(A) is inhabited), then A is a 1-type.

Here is a slightly different wording of the proof:

Suppose f : isSet(A) and let x, y : A. For any p, q : x = y we have f(p, q) : p =
q. For q′ : x = y and r : q = q′ we prove

r = f(p, q)−1·f(p, q′)

by path induction on r. �

3.2 Theorem 3.2.2

Recall the statement:

It is not the case that for all A : U we have ¬¬A→ A.

Here is a minor variant. Set

F :≡
∏
A:U

¬¬A→ A, G :≡
∏
A:U

‖2 = A‖ → A.

It suffices to prove F → G and ¬G.

Proof of F → G. Given f : F we must define g : G. It suffices define

h : ‖2 = A‖ → ¬¬A

for A : U , and to set g(A, u) :≡ f(A, h(u)). It suffices in turn to define

h′ : (2 = A)→ ¬¬A.

To do this, we set h′(p, k) :≡ k(transportX 7→X(p, 02)) for all k : ¬A.

Proof of ¬G. Similar to the proof of ¬F (that is, the proof of Theorem 3.2.2) in
the book. �

The (limited) interest of this comment is that, given a type B, it might be
easier to prove B → G than to prove B → F (or to prove B → 0 directly).

25

3.3 Proof of Lemma 3.3.4

Recall the statement of Lemma 3.3.4: Every mere proposition is a set. In the proof
of Lemma 3.1.8 in §3.1 above we derived the conclusion that x = y is a set using
only the assumption that x = y is a mere proposition.

3.4 Contractibility (§3.11)

For the reader’s convenience we paste below most of the statements in §3.11 of the
book.

Definition 3.11.1. A type A is contractible, or a singleton, if there is a : A,
called the center of contraction, such that a = x for all x : A. We denote the
specified path a = x by contrx.

In other words, the type isContr(A) is defined to be

isContr(A) :≡
∑
a:A

∏
x:A

(a = x).

Lemma 3.11.3. For a type A, the following are logically equivalent

1. A is contractible in the sense of Definition 3.11.1.

2. A is a mere proposition, and there is a point a : A.

3. A = 1.

Lemma 3.11.4. For any type A, the type isContr(A) is a mere proposition.

Corollary 3.11.5. If A is contractible, then so is isContr(A).

Lemma 3.11.6. If P : A→ U is a type family such that each P (a) is contractible,
then

∏
x:A P (x) is contractible.

Of course, if A is equivalent to B and A is contractible, then so is B. More
generally, it suffices for B to be a retract of A. By definition, a retraction is a
function r : A→ B such that there exists a function s : B → A, called its section,
and a homotopy ε :

∏
y:B(r(s(y)) = y); then we say that B is a retract of A.

Lemma 3.11.7. If B is a retract of A, and A is contractible, then so is B.

Lemma 3.11.8. For any A and any a : A, the type
∑

x:A(a = x) is contractible.

26

When this happens, it can allow us to simplify a complicated construction up
to equivalence, using the informal principle that contractible data can be freely
ignored. This principle consists of many lemmas, most of which we leave to the
reader; the following is an example.

Lemma 3.11.9. Let P : A→ U be a type family.

1. If each P (x) is contractible, then
∑

x:A P (x) is equivalent to A.

2. If A is contractible and a : A, then
∑

x:A P (x) is equivalent to P (a).

Lemma 3.11.10. A type A is a mere proposition if and only if for all x, y : A,
the type x =A y is contractible.

3.5 Proof of Lemma 3.11.4

Recall the statement (see §3.4): For any type A, the type isContr(A) is a mere
proposition.

Here is a minor variant of the proof:

Let c, c′ : isContr(A). Since A is contractible (by c or c′), Lemma 3.11.3 (see
§3.4 above) implies A = 1, and thus

isContr(A) =

(∑
a:1

∏
x:1

(a = x)

)
=

(∑
a:1

∏
x:1

1

)
=

(∑
a:1

1

)
= 1. �

3.6 Proof of Lemma 3.11.8

Recall the statement (see §3.4):

For any A and any a : A, the type
∑

x:A(a = x) is contractible.

Here is a minor variant of the proof:

We prove (x, p) = (a, refla) for any (x, p) :
∑

x:A(a = x) by based path induc-
tion. �

3.7 Exercise 3.5

Statement. Show that isProp(A) ' (A→ isContr(A)).

27

Solution. Recall the definitions:

isProp(A) :≡
∏
a,b:A

(a = b), isContr(A) :≡
∑
a:A

∏
b:A

(a = b).

By Lemma 3.3.5 the type isProp(A) is a mere proposition. By Example 3.6.2
and Lemma 3.11.4 (see §3.4 p. 26) the type A→ isContr(A) is also a mere propo-
sition. By Lemma 3.3.3 it suffices to show that isProp(A) and A→ isContr(A) are
logically equivalent.

We define

u : isProp(A)→ (A→ isContr(A)), v : (A→ isContr(A))→ isProp(A)

by
u(f, a) :≡ (a, f(a)), v(g)(a, b) :≡ pr2(g(a))(a)−1·pr2(g(a))(b). �

3.8 Exercise 3.6

Statement. Show that if A is a mere proposition, then so is A+ ¬A.

Proof. For a1, a2 : A we have a1 = a2 because A is a mere proposition, and
thus inl(a1) = inl(a2). For a′1, a′2 : ¬A we have a′1 = a′2 because ¬B is a mere
proposition for any type B, and thus inr(a′1) = inr(a′2). Let a : A and a′ : ¬A.
We must show inl(a) = inr(a′). Let f : 0 → (inl(a) = inr(a′)), and note that
f(a′(a)) : inl(a) = inr(a′). �

3.9 Exercise 3.7

Statement. Show that if A and B are mere propositions and ¬(A×B), then A+B
is also a mere proposition.

Proof. It suffices to prove x = y in the following cases:

(a) x = inl(a), y = inl(a′),

(b) x = inr(b), y = inr(b′),

(c) x = inl(a), y = inr(b).

We leave Cases (a) and (b) to the reader, and take up Case (c). Let f : (A×B)→ 0
and g : 0→ (inl(a) = inr(b)). We get g(f(a, b)) : inl(a) = inr(b). �

28

3.10 Exercise 3.9

We admit the Law of Excluded Middle LEM defined in (3.4.1) by

LEM :
∏
A:U

isProp(A)→ (A+ ¬A),

and we want to prove (∑
A:U

isProp(A)

)
' 2. (41)

Proof of (41). By Lemma 3.3.2 we have

f1 :
∏
A:U

isProp(A)→ A→ (A = 1).

It is easy to see that we have

f2 :
∏
A:U

¬A→ (A = 0).

Define
f3 :

∏
A:U

isProp(A)→ (A+ ¬A)→ ((A = 1) + (A = 0))

by

f3(A, p, inl(a)) :≡ inl(f1(A, p, a)), f3(A, p, inr(a′)) :≡ inr(f2(A, a
′)).

Define
f4 :

∏
A:U

isProp(A)→
(
(A = 1) + (A = 0)

)
by

f4(A, p) :≡ f3(A, p, LEM(A, p)).

In view of f4 we can define

f5 :

(∑
A:U

isProp(A)

)
→ 2

by

f5(A, p) :≡

{
12 if A = 1

02 if A = 0.

29

Let p0 : isProp(0) and p1 : isProp(1), and define

f6 : 2→
∑
A:U

isProp(A)

by f6(02) :≡ (0, p0) and f6(12) :≡ (1, p1).

It is straightforward to check that f5 ◦ f6 = id2.

Let A : U and p : isProp(A). It suffices to show

f6(f5(A, p)) = (A, p). (42)

In view of f4 it suffices to prove that (42) holds if A = 1 or if A = 0, which is easy.
�

Note that the Law of Excluded Middle LEM is equivalent to

LEM′ :
∏
A:U

isProp(A)→
(
(A = 1) + (A = 0)

)
.

3.11 Exercise 3.17

Here is a slightly more precise statement:

Show that the rules for the propositional truncation given in §3.7 of the book
are sufficient to imply the following induction principle: given B : ‖A‖ → Prop
and f :

∏
a:AB(|a|), there is a g :

∏
x:‖A‖B(x) such that g(|a|) = f(a) for all a : A.

Proof. Let p : isProp(‖A‖) (i.e. p(x, y) : x = y for all x, y : ‖A‖), and let x : ‖A‖.
The map h : A→ B(x) defined by

h(a) :≡ p(|a|, x)?(f(a))

induces a map k : ‖A‖ → B(x) such that k(|a|) ≡ h(a) for all a : A, and we can
set g(x) :≡ k(x) for all x : ‖A‖. This yields

g(|a|) ≡ k(|a|) ≡ h(a) ≡ p(|a|, |a|)?(f(a)) = f(a)

for all a : A. �

3.12 Exercise 3.18

Statement. Show that the law of excluded middle (3.4.1) and the law of double
negation (3.4.2) are logically equivalent.

30

Recall that the law of excluded middle LEM defined in (3.4.1) by

LEM :
∏
A:U

isProp(A)→ (A+ ¬A),

and that the law of double negation is defined in (3.4.2) by∏
A:U

isProp(A)→ (¬¬A→ A).

Proof of the Statement. To prove that the law of excluded middle implies the law
of double negation, we assume that the types

isProp(A), A+ ¬A, ¬¬A

are inhabited, and we show that so is A as follows. Let x : A + ¬A. If x ≡ inl(a)
for some a : A we are done. If x ≡ inr(a′) for some a′ : ¬A, we let f : 0→ A and
a′′ : ¬¬A, and get f(a′′(a′)) : A.

To prove that the law of double negation implies the law of excluded middle,
we let A be a mere proposition, and we show that A+¬A is inhabited as follows.
By Exercise 3.6 (see §3.8 p. 28 above), A+¬A is also a mere proposition, and thus,
by double negation, there is a map ¬¬(A+¬A)→ (A+¬A). Hence it suffices to
check that ¬¬(A + ¬A) is inhabited. To this end, we define x′′ : ¬¬(A + ¬A) by
x′′(x′) :≡ (x′ ◦ inr)(x′ ◦ inl). �

4 Chapter 4

4.1 Proof of Lemma 4.1.2

For the reader’s convenience we paste the statement and proof of Lemma 4.1.2:

Lemma 4.1.2. Suppose we have a type A with a : A and q : a = a such that

(i) The type a = a is a set.

(ii) For all x : A we have ‖a = x‖.

(iii) For all p : a = a we have p·q = q·p.

31

Then there exists f :
∏

x:A(x = x) with f(a) = q.

Proof. Let g :
∏

x:A‖a = x‖ be as given by (ii). First we observe that each type
x =A y is a set. For since being a set is a mere proposition, we may apply the
induction principle of propositional truncation, and assume that g(x) = |p| and
g(y) = |p′| for p : a = x and p′ : a = y. In this case, composing with p and p′−1
yields an equivalence (x = y) ' (a = a). But a = a is a set by (i), so x = y is also
a set.

Now, we would like to define f by assigning to each x the path g(x)−1·q·g(x),
but this does not work because g(x) does not inhabit a = x but rather ‖a = x‖,
and the type x = x may not be a mere proposition, so we cannot use induction on
propositional truncation. Instead we can apply the technique mentioned in §3.9:
we characterize uniquely the object we wish to construct. Let us define, for each
x : A, the type

B(x) :≡
∑
r:x=x

∏
s:a=x

(r = s−1·q·s).
We claim that B(x) is a mere proposition for each x : A. Since this claim is itself
a mere proposition, we may again apply induction on truncation and assume that
g(x) = |p| for some p : a = x. Now suppose given (r, h) and (r′, h′) in B(x); then
we have

h(p)·h′(p)−1 : r = r′.

It remains to show that h is identified with h′ when transported along this equality,
which by transport in identity types and function types (§§2.9 and 2.11), reduces
to showing

h(s) = h(p)·h′(p)−1·h′(s)
for any s : a = x. But each side of this is an equality between elements of x = x,
so it follows from our above observation that x = x is a set.

Thus, each B(x) is a mere proposition; we claim that
∏

x:AB(x). Given x : A,
we may now invoke the induction principle of propositional truncation to assume
that g(x) = |p| for p : a = x. We define r :≡ p−1·q·p; to inhabit B(x) it remains to
show that for any s : a = x we have r = s−1·q·s. Manipulating paths, this reduces
to showing that q·(p·s−1) = (p·s−1)·q. But this is just an instance of (iii). �

Let us denote by (?) the claim

h is identified with h′ when transported along this equality, which by transport in
identity types and function types, reduces to showing

h(s) = h(p)·h′(p)−1·h′(s)
32

for any s : a = x

in the proof of Lemma 4.1.2 (see above). We make three observations:

(1) The fact that (?) implies that B(x) is a mere proposition follows from Theorem
2.7.2 (see §2.1 p. 14).

(2) The statement (?) itself follows from the lemma below, which is easily proved
by path induction:

Lemma. Let A be a type; let a, x : A; let q : a = a; let P : (x = x)→ U be defined
by

P (r) :≡
∏
s:a=x

(r = s−1·q·s);
and let

r, r′ : x = x, t : r = r′, h : P (r), s : a = x.

Then
transportP (t, h)(s) = t−1·h(s). �

(3) Let us spell out the end of the proof. Recall that B(x) is defined by

B(x) :≡
∑
r:x=x

∏
s:a=x

(r = s−1·q·s).
Let k :

∏
x:AB(x), and set f(x) :≡ pr1(k(x)) for all x : A. We must show

(a) f :
∏
x:A

(x = x) and (b) f(a) = q.

Claim (a) is clear. Let us prove (b). By assumption (iii) of Lemma 4.1.2 (see
above), there is a u :

∏
s:a=a(q = s−1·q·s). In particular we have (q, u) : B(a). As

B(a) is a mere proposition, this implies k(a) = (q, u), and thus f(a) = q. �

4.2 Proof of Lemma 4.2.11

Use also Theorem 2.15.7.

For the reader’s convenience we paste the statement of Theorem 2.15.7:

Suppose suppose we have a type X and type families A : X → U and P :∏
x:X A(x)→ U . Then we have a function∏

x:X

∑
a:A(x)

P (x, a)

→
 ∑
g:
∏

x:X A(x)

∏
x:X

P (x, g(x))

 . (43)

33

defined by f 7→ (pr1 ◦ f, pr2 ◦ f).

Theorem 2.15.7. (43) is an equivalence.

4.3 Proof of Lemma 4.7.3

I would replace “applying a version of Lemma 3.11.9” with “using based path
induction”.

4.4 Proof of Theorem 4.7.6

Let us check Equivalence (?) in the proof of Theorem 4.7.6: Recalling that we are
given type families P,Q : A → U , a dependent function f :

∏
a:A P (a) → Q(a), a

path p : a = x in A, and a v : Q(x), set

R(a, p) :≡
∑
u:P (a)

(
p?
(
f(a, u)

)
= v
)
.

Claim: (∑
a:A

∑
p:a=x

R(a, p)

)
(a)
'

 ∑
z:
∑

a:A(a=x)

R(z)

 (b)
' R(x, reflx).

Proof. Equivalence (a) follows from Exercise 2.10 (see §2.14 p. 24). Equivalence
(b) follows from §3.4 p. 26. �

4.5 Proof of Lemma 4.8.1

Recall the statement:

For any type family B : A→ U , the fiber of pr1 : (
∑

x:AB(x))→ A over a : A
is equivalent to B(a):

fibpr1(a) ' B(a).

Proof. We have
fibpr1(a) :≡

∑
u:
∑

x:AB(x)

(pr1(u) = a)

(a)
'
∑
x:A

∑
b:B(x)

(x = a) '
∑
x:A

∑
p:x=a

B(x)

34

(b)
'

∑
z:
∑

x:A(x=a)

B(pr1(z))
(c)
' B(pr1(a, refla)) ≡ B(a),

where (a) and (b) follow from Exercise 2.10 (see §2.14 p. 24), and (c) follows from
§3.4 p. 26. �

4.6 Proof of Lemma 4.8.2

Here is a minor variant to the proof of Lemma 4.8.2. Recall the statement:

For any function f : A→ B, we have A '
∑

b:B fibf (b).

Recall Definition 4.2.4: The fiber of a map f : A→ B over a point b : B is

fibf (b) :≡
∑
a:A

(f(a) = b).

In particular fibf is a type family over B. The corresponding transport can be
described as follows. Let p : b =B b′ and (a, q) : fibf (b), that is a : A and
q : f(a) = b. Then we have

p?(a, q) = (a, q·p). (44)

Set
C :≡

∑
b:B

fibf (b) :≡
∑
b:B

∑
a:A

(f(a) = b).

We must show A ' C. Define g : A→ C and h : C → A by

g(a) :≡ (f(a), a, reflf(a)), h(b, a, p) :≡ a.

We claim that g and h are inverses. It is easy to check h◦g = idA. Let (b, a, p) : C.
It only remains to show (f(a), a, reflf(a)) = (b, a, p). But this follows from (44). �

4.7 Proof of Theorem 4.8.3

For the reader’s convenience we paste the statement and proof of Theorem 4.8.3:

Theorem 4.8.3. For any type B there is an equivalence

χ :

(∑
A:U

(A→ B)

)
' (B → U).

35

Proof. We have to construct quasi-inverses

χ :

(∑
A:U

(A→ B)

)
→ B → U

ψ : (B → U)→

(∑
A:U

(A→ B)

)
.

We define χ by χ((A, f), b) :≡ fibf (b), and ψ by ψ(P) :≡ ((
∑

b:B P (b)), pr1).

Now we have to verify that χ ◦ ψ ' id and that ψ ◦ χ ' id.

(a) Let P : B → U . By Lemma 4.8.1 (see §4.5 p. 34), fibpr1(b) ' P (b) for any
b : B, so it follows immediately that P ' χ(ψ(P)).

(b) Let f : A→ B be a function. We have to find a path(∑
b:B

fibf (b), pr1

)
= (A, f).

First note that by Lemma 4.8.2 (see §4.6 p. 35), we have e :
∑

b:B fibf (b) ' A with
e(b, a, p) :≡ a and

e−1(a) :≡ (f(a), a, reflf (a)).

By Theorem 2.7.2 (see §2.1 p. 14), it remains to show ua(e)?(pr1) = f . But by the
computation rule for univalence and (2.9.4) (see (45) below), we have ua(e)?(pr1) =
pr1 ◦ e−1, and the definition of e−1 immediately yields pr1 ◦ e−1 ≡ f . �

Here are some details about the last sentence of the above proof:

Firstly we rewrite (2.9.4) as follows. Abbreviating transport by t we have

tA→B(p, f, x) = tB(p, f(tA(p−1, x))) (45)

for p : x1 =X x2, f : A(x1)→ B(x1), a2 : A(x2).

Let the notation of §4.6 above be in force. Let pr1 : C → B be the first
projection. We must show

(C, pr1) =∑
X:U X→B (A, f). (46)

By §4.6 we have an equivalence e : C ' A. Set g :≡ pr1(e
−1) (here of course pr1

denotes the first projection (A ' C)→ (A→ C)). Set also q :≡ ua(e), so that we
get q : C = A. We claim

q?(pr1) = f. (47)

36

By Theorem 2.7.2 (see §2.1 p. 14), (47) will imply (46). For all X : U set I(X) :≡
X, D(X) :≡ A. Let the notation of (45) be in force. In particular, the computation
rule for univalence stated right after Remark 2.10.4 in the book reads

tI(q−1) = g, (48)

and (47) becomes
tI→D(q, pr1) = f.

Let a : A. We must show
tI→D(q, pr1, a) = f(a).

We get

tI→D(q, pr1, a)
(a)
= tD(q, pr1(tI(q−1, a)))

(b)
= tD(q, pr1(g(a)))

(c)
= pr1(g(a))

(d)
= f(a),

where (a) follows from (45), (b) follows from (48), (c) follows from Lemma 2.3.5
in the book (see below), and (d) follows from the definition of g. �

Lemma 2.3.5. If P : A→ U is defined by P (x) :≡ B for a fixed B : U , then for
any x, y : A and p : x = y and b : B we have a path

transportconstBp (b) : transportP (p, b) = b.

4.8 Proof of Theorem 4.8.4

Here is the statement:

Let f : A→ B be a function. Then the diagram

A
θf //

f
��

U•
pr1
��

B
χ(A,f)

// U

is a pullback square (see Exercise 2.11). Here the function θf is defined by

θf (a) :≡
(

fibf
(
f(a)

)
,
(
a, reflf(a)

))
.

I don’t understand the proof of the equivalence

A '
∑
b:B

∑
X:U

∑
x:X

(fibf (b) = X) (49)

37

at the beginning of the proof of Theorem 4.8.4. Here is how I would present things.

Claim. For any type A we have

A '
∑
X:U

(
X × (X = A)

)
. (50)

Proof. Write t for “transport”. Set C :≡
∑

X:U
(
X × (X = A)

)
, and define

f : A→ C, g : C → A

by
f(a) :≡ (A, a, reflA), g(B, b, p) :≡ tX 7→X(p, b).

We have g(f(a)) ≡ a for all a : A. Let (B, b, p) : C. We have

f(g(B, b, p)) = (A, tX 7→X(p, b), reflA)

and we must show
(B, b, p) = (A, tX 7→X(p, b), reflA).

By Theorem 2.7.2 (see §2.1 p. 14) it suffices to verify

tX 7→X×(X=A)(p, (b, p)) = (tX 7→X(p, b), reflA).

By Theorem 2.6.4 it suffices to prove tX 7→(X=A)(p, p) = reflA. But this follows from
Lemma 2.11.2. �

Going back to the beginning of the proof of Theorem 4.8.4, we get

A '

(∑
b:B

fibf (b)

)
'

(∑
b:B

∑
X:U

(
X ×

(
X = fibf (b)

)))

'
∑
b:B

∑
X:U

∑
x:X

(fibf (b) = X),

the first equivalence following from Lemma 4.8.2 (see §4.6 p. 35), the second one
from (50), and the third one being straightforward. This proves (49). �

4.9 Exercise 4.4

Statement. (The unstable octahedral axiom.) Suppose f : A→ B and g : B → C
and b : B.

38

(i) Show that there is a natural map fibg◦f (g(b)) → fibg(g(b)) whose fiber over
(b, reflg(b)) is equivalent to fibf (b).

(ii) Show that fibg◦f (c) '
∑

w:fibg(c)
fibf (pr1w).

Solution. (i) Let b : B. We define h : fibg◦f (g(b))→ fibg(g(b)), that is

h :

(∑
x:A

(
g(f(x)) = g(b)

))
→
∑
y:B

(g(y) = g(b)),

by h(x, p) :≡ (f(x), p) for x : A and p : g(f(x)) = g(b). We get

fibh(b, reflg(b)) :≡
∑

w:
∑

x:A(g(f(x))=g(b))

(
h(w) = (b, reflg(b))

)

=
∑
x:A

∑
p:g(f(x))=g(b)

(
(f(x), p) = (b, reflg(b))

)
by Exercise 2.10 (see §2.14 p. 24). For each x : A we have

∑
p:g(f(x))=g(b)

(
(f(x), p) = (b, reflg(b))

)
(a)
=

∑
p:g(f(x))=g(b)

∑
q:f(x)=b

(
transportλ(y:B).g(y)=g(b)(q, p) = reflg(b)

)

=
∑

p:g(f(x))=g(b)

∑
q:f(x)=b

(
apg(q)

−1·p = reflg(b)
)

=
∑

q:f(x)=b

∑
p:g(f(x))=g(b)

(
p = apg(q)

)
(b)
=

∑
q:f(x)=b

1

(c)
= (f(x) = b),

where (a) follows from Theorem 2.7.2 (see §2.1 p. 14), and (b) and (c) follow from
§3.4 p. 26.

39

(ii) We have

∑
w:fibg(c)

fibf (pr1w)

≡
∑

w:
∑

y:B(g(y)=c)

∑
x:A

(
f(x) = pr1w

)
(a)
=
∑
y:B

∑
q:g(y)=c

∑
x:A

(
f(x) = y

)

=
∑
x:A

∑
y:B

(g(y) = c)× (f(x) = y).

where (a) follows from Exercise 2.10 (see §2.14 p. 24). For each x : A we check
that the maps

ϕ :

(∑
y:B

(g(y) = c)× (f(x) = y)

)
→
(
g(f(x)) = c

)
and

ψ :
(
g(f(x)) = c

)
→
∑
y:B

(g(y) = c)× (f(x) = y)

defined by

ϕ(y, q, p) :≡ apg(p)·q, ψ(r) :≡
(
f(x), r, reflf(x)

)
are inverses. This gives

 ∑
w:fibg(c)

fibf (pr1w)

 =

(∑
x:A

(
g(f(x)) = c

))
= fibg◦f (c),

where the last equality follows from §3.4 p. 26.

40

4.10 Exercise 4.5

Statement. Prove that equivalences satisfy the 2-out-of-6 property: given f : A→
B and g : B → C and h : C → D, if g ◦ f and h ◦ g are equivalences, so are f, g, h,
and h ◦ g ◦ f . Use this to give a higher-level proof of Theorem 2.11.1.

Solution. Let (g ◦ f)−1 be an inverse of g ◦ f and (h ◦ g)−1 an inverse of h ◦ g.
Setting k :≡ f ◦ (g ◦ f)−1, we get

g ◦ k = idC (51)

and

k :≡ f ◦ (g ◦ f)−1

=
(
(h ◦ g)−1 ◦ h ◦ g

)
◦ f ◦ (g ◦ f)−1

= (h ◦ g)−1 ◦ h ◦
(
g ◦ f ◦ (g ◦ f)−1

)
= (h ◦ g)−1 ◦ h,

which implies
k ◦ g = (h ◦ g)−1 ◦ h ◦ g = idB. (52)

Now (51) and (52) show that g is invertible. The end of the exercise is straight-
forward. For the higher-level proof of Theorem 2.11.1, see §2.9. �

4.11 Exercise 4.6 (iii)

Statement. For A,B : U , define

idtoqinvA,B : (A = B)→
∑

f :A→B

qinv(f)

by path induction in the obvious way. Let qinv-univalence denote the modified form
of the univalence axiom which asserts that for all A,B : U the function idtoqinvA,B
has an inverse.

(i) Show that qinv-univalence can be used instead of univalence in the proof of
function extensionality in §4.9.

(ii) Show that qinv-univalence can be used instead of univalence in the proof of
Theorem 4.1.3.

(iii) Show that qinv-univalence is inconsistent (i.e. allows construction of an inhab-
itant of 0). Thus, the use of a “good” version of isequiv is essential in the statement
of univalence.

41

Solution. Recall that, given a map f : A→ B, the type qinv(f) is defined by

qinv(f) :≡
∑
g:B→A

(f ◦ g) ∼ idB)× (g ◦ f) ∼ idA) (53)

(see beginning of Chapter 4 in the book), and that ishae(f) is defined by

ishae(f) :≡
∑
g:B→A

∑
η:g◦f∼idA

∑
ε:f◦g∼idB

∏
x:A

f(ηx) = ε(fx) (54)

(see beginning of Definition 4.2.1 in the book). (Recall that ishae(f) stands for “f
is a half-adjoint equivalence”.)

We leave (i) and (ii) to the reader, and prove (iii). In view of Theorem 4.1.3
it suffices to show that, for any map f : A → B, the type qinv(f) is a mere
proposition.

For any types A and B we put

(A ' B) :≡
∑

f :A→B

ishae(f), (A w B) :≡
∑

f :A→B

qinv(f).

By Theorem 4.2.3 and the comment preceding it, there are dependent functions

i :
∏
A,B:U

∏
f :A→B

ishae(f)→ qinv(f), p :
∏
A,B:U

∏
f :A→B

qinv(f)→ ishae(f).

For all A,B : U let e(A,B) : (A = B) → (A w B) be the natural map (which we
assume to admit an inverse).

Claim: if f : A→ B and x : qinv(f), then i(A,B, f, p(A,B, f, x)) = x.

Since (f, x) : A w B, we can assume by qinv-univalence and path induction
that

B ≡ A, f ≡ idA, x ≡ e(A,A, reflA),

and the claim follows easily from the definition of i, p and e.

For f : A→ B and x, y : qinv(f) we have p(A,B, f, x) = p(A,B, f, y) because
ishae(f) is a mere proposition, and the claim implies x = y, as required. �

5 Chapter 5

5.1 Induction principle for W-types (§5.3)

Let W :≡ W
a:A

B(a) be a W-type. Recall the following:

42

We have a constructor

sup :
∏
a:A

(B(a)→ W)→ W,

and the induction principle can be stated as follows:

We assume the recurrence

r :
∏
a:A

(B(a)→ W)→ (B(a)→ E)→ E

if we are given a type E : U (case 1), and

r :
∏
a:A

∏
f :B(a)→W

 ∏
b:B(a)

E(f(b))

→ E(sup(a, f))

if we are given a type family E : W → U (case 2).

The solution s to the above recurrence is a function s : W → E in case 1 and a
dependent function s :

∏
w:W E(w) in case 2. In both cases the computation rule

s(sup(a, f)) = r(a, f, s ◦ f)

holds for all a : A and all f : B(a)→ W .

5.2 Second bullet of §5.6

This is about the comment containing the second bullet of §5.6 of the book:

k : ((D → Prop)→ Prop)→ D.

The recursion principle can be stated as follows: Given

f : ((D → Prop)→ Prop)→ A,

we get g : D → A such that g(k(θ)) ≡ f(θ) for all θ : (D → Prop)→ Prop.

5.3 Before Remark 5.6.3

Just before Remark 5.6.3 we read:

43

«This is a contradiction: no proposition can be equivalent to its negation. (Sup-
posing P ⇔ ¬P , if P , then ¬P , and so 0; hence ¬P , but then P , and so 0.)»

Here are some more details about the above parenthesis:

If B : A→ U is a type family over a type A, then we have a codiagonal map

(λf.λa.f(a, a)) :

(
A→

∏
a:A

B(a)

)
→
∏
a:A

B(a). (55)

In the particular case when B : U is constant, the above type becomes

(A→ A→ B)→ (A→ B).

If we assume further A ≡ P and B ≡ 0, we get a map g : (P → ¬P)→ ¬P . Recall
that we want to prove (P ⇔ ¬P) → 0. In view of g, our assumption P → ¬P
implies ¬P (and ¬P clearly implies 0 under our assumption P ⇔ ¬P). �

5.4 Displays (5.6.4)–(5.6.7)

As Display (5.6.4) of the book, which reads

c : (A→ W)→ (B → C → W)→ D → W → W,

can be rewritten as

c : (A→ W)→ ((B × C)→ W)→ D → (1→ W)→ W,

we can (and do) assume that the constructor c has the form

c : (A→ W)→ B → W.

The recurrence takes the form

r : (A→ W)→ (A→ P)→ B → P

(see (5.6.5) in the book) if P : U , and

r :
∏

α:A→W

(∏
a:A

P (α(a))

)
→
∏
b:B

P (c(α, b)).

(see (5.6.7) in the book) if P : W → U . The solution s to the recurrence r satisfies
in both cases the computation rule

s(c(α, b)) ≡ r(α, s ◦ α, b)

for all α : A→ W and all b : B (see (5.6.6) in the book).

44

5.5 Proof of Theorem 5.8.2

Here is a minor rewriting of the proof of the fact that ppmap(R, S) is a mere
proposition in implication (i) =⇒ (ii) in the proof of Theorem 5.8.2:

Let

f, g :
∏
b:A

R(b)→ S(b), p : f(a0, r0) = s0, q : g(a0, r0) = s0,

so that
(f, p), (g, q) : ppmap(R, S).

It suffices to prove (f, p) = (g, q). Setting

D(b, r) :≡ (f(b, r) = g(b, r)), d :≡ p·q−1,
we get h : f ∼ g with h(a0, r0) = p·q−1. Function extensionality yields a path
t : f = g satisfying

t?(p) = h(a0, r0)
−1·p = (p·q−1)−1·p = q. �

5.6 Proof of Theorem 5.8.4 (iii)

By Theorem 2.15.7 (see §4.2 p. 33) the type∑
g:
∏

(a,b:A)R(a,b)→S(a,b)

∏
a:A

(
g
(
a, a, r0(a)

)
= s0(a)

)
is equivalent to the type∏

a:A

∑
g(a):

∏
(b:a)R(a,b)→S(a,b)

(
g
(
a, a, r0(a)

)
= s0(a)

)
. �

6 Chapter 6

6.1 Display (6.2.2)

If P is a type family over a type A, if f :
∏

a:A P (a) is a dependent function, and
if p : x = y is a path in A, then we have

apdf (p) : f(x) =P
p f(y),

i.e. apdf (p) is a dependent path from f(x) to f(y) over p.

45

6.2 Lemma 6.4.1

Recall the statement of the lemma: The type S1 satisfies loop 6= reflbase.

This implies that S1 is not a set, and thus, by Lemma 3.3.4 (which says that
every mere proposition is a set), that S1 is not a mere proposition, and thus, by
§3.4 p. 26, that S1 is not contractible.

6.3 Proof of Corollary 6.4.3

For the reader’s convenience we paste the statement and the proof of Corollary
6.4.3:

Corollary 6.4.3. If the type S1 belongs to some universe U , then U is not a
1-type.

Proof. The type S1 = S1 in U is, by univalence, equivalent to the type S1 ' S1

of autoequivalences of S1, so it suffices to show that S1 ' S1 is not a set. For
this, it suffices to show that its equality type idS1 =(S1=S1) idS1 is not a mere
proposition. Since being an equivalence is a mere proposition, this type is equiv-
alent to idS1 =(S1→S1) idS1 . But by function extensionality, this is equivalent to∏

x:S1(x = x), which as we have seen in Lemma 6.4.2 contains two unequal ele-
ments. �

The proof of Corollary 6.4.3 uses the following claim:

Claim. Let A and B be types; let

ϕ1 : (A ' B)→ (A→ B), ϕ2 :
∏

u:A'B

ishae(ϕ1(u))

be the first and second projection (see (54) p. 42 for the definition of ishae); and
let u, v : A ' B. Then the map

apϕ1
: (u = v)→ (ϕ1(u) = ϕ1(v)) (56)

is invertible.

Proof. By Theorem 4.4.5 it suffices to show that the fibers of (56) are contractible.
Set

C :≡
∑

p:ϕ1(u)=ϕ(v)

(
p?(ϕ2(u)) =ishae(f) ϕ2(v)

)
and let ψ1 : C → (ϕ1(u) = ϕ(v)) be the first projection. By Theorem 2.7.2 (see
§2.1 p. 14) there is an invertible map f : (u = v) → C such that ψ1 ◦ f = apϕ1

.

46

Let p : ϕ1(u) = ϕ1(v). We have fibapϕ1
(p) ' fibψ1(p). By Lemma 4.8.1 (see §4.5

p. 34) the latter is equivalent to

p?(ϕ2(u)) =ishae(f) ϕ2(v). (57)

As ishae(f) is contractible by Theorem 4.2.13, the results of §3.4 p. 26 imply that
it is a mere proposition, and Lemma 3.3.4 (which says that every mere proposition
is a set) implies that it is a set. In particular (57) is contractible. �

6.4 Proof of Lemma 6.5.1

The sentence containing the first display follows from Theorem 2.11.3.

6.5 Section 6.8

Here is the recursion principle for the pushout

Z :≡ A tC B

attached to the diagram
C

g //

f

��

B

inr

��
A

inl
//

glue

;C

Z,

where glue is a homotopy from inl ◦ f to inr ◦ g:

Given
α : A→ D, β : B → D, γ : α ◦ f ∼ β ◦ g

there is an s : Z → D such that

s ◦ inl ≡ α, s ◦ inr ≡ β, aps(glue(c)) = γ(c)

for all c : C.

Here is the induction principle: Let D : Z → U be a type family, let

α :
∏
a:A

D(inl(a)), β :
∏
b:B

D(inr(b)),

47

γ :
∏
c:C

(
α
(
f(c)

)
=D

glue(c) β
(
g(c)

))
.

Then there is an s :
∏

z:Z D(z) such that

s ◦ inl ≡ α, s ◦ inr ≡ β, apds(glue(c)) = γ(c)

for all c : C.

Here is the uniqueness principle: Let h, h′ : Z → D and

α :
∏
a:A

(
h
(
inl(a)

)
= h′

(
inl(a)

))
, β :

∏
b:B

(
h
(
inr(b)

)
= h′

(
inr(b)

))
,

γ :
∏
c:C

(
α
(
f(c)

)
=
z 7→(h(z)=h′(z))
glue(c) β

(
g(c)

))
.

Then there is an s :
∏

z:Z

(
h(z) = h′(z)

)
such that

s ◦ inl ≡ α, s ◦ inr ≡ β, apds(glue(c)) = γ(c)

for all c : C.
?

In the proof of Lemma 6.8.2 let us display the definition of t ◦ ct : coconeD(E)
and of s(c) : Z → E:

t ◦ ct :≡ (t ◦ inl, t ◦ inr, apt ◦ glue),

s(c) ◦ inl :≡ i, s(c) ◦ inr :≡ j, aps(c) ◦ glue := h.

(Recall: t : Z → E, c = (i, j, h) : coconeD(E).)

Some more details about the end of the proof of Lemma 6.8.2:

Set u :≡ s(t ◦ ct), and let z : Z, x : C. We want to show u = t using the
uniqueness principle. This easily reduces to verifying that

reflt(inl(f(x))) =
z 7→(u(z)=t(z))
glue(x) reflt(inr(g(x))),

or, equivalently,

transportz 7→(u(z)=t(z))(glue(x), reflt(inl(f(x)))) = reflt(inr(g(x))),

is inhabited. We have, for z1, z2 : Z, p : z1 = z2 and q : u(z1) = t(z1),

transportz 7→(u(z)=t(z))(p, q) = apu(p)
−1·q·apt(p).

(The above formula is easily proved by induction on p.) Hence it suffices to show
apu(glue(x)) = apt(glue(x)). But this follows immediately from the definition of
u. �

48

6.6 Section 6.9

The induction principle for ‖A‖ is stated as follows:

“Given any B : ‖A‖ → U together with

• a function g :
∏

a:AB(|a|), and

• for any x, y : ‖A‖ and u : B(x) and v : B(y), a dependent path q : u =B
p(x,y) v,

where p(x, y) is the path coming from the second constructor of ‖A‖,

there exists
f :

∏
x:‖A‖

B(x)

such that f(|a|) ≡ g(a) for a : A, and also another computation rule. However,
because there can be at most one function between any two mere propositions
(up to homotopy), this induction principle is not really useful (see also Exercise
3.171).”

Let us spell out the last sentence above.

We can rewrite the second premise as

(?) for any x, y : ‖A‖, any u : B(x) and any v : B(y), we are given a dependent
path q(x, y, u, v) : u =B

p(x,y) v, where p(x, y) : x = y is the path coming from the
second constructor of ‖A‖.

Consider the condition

(??) for any x : ‖A‖ the type B(x) is a mere proposition.

We claim
(?) ⇐⇒ (??). (58)

Proof of (58). Indeed, assume (?). Letting x : ‖A‖ and u, v : B(x), we have
r : reflx = p(x, x) (because ‖A‖ is a mere proposition and thus a set) and

u = (reflx)?(u) = p(x, x)?(u) = v,

the second and third paths being respectively aps 7→s?(u)(r) and q(x, x, u, v). This
proves (??). The converse is clear. �

We have in particular the following induction principle:

Given any P : ‖A‖ → Prop together with a function f :
∏

a:A P (|a|), there
exists g :

∏
x:‖A‖ P (x) such that g(|a|) ≡ f(a) for a : A.

1See §3.11 p. 30.

49

6.7 Notion of quotient (beginning of §6.10)

We shall define quotients via truncations in §7.5 below.

6.8 Proof of Theorem 6.10.6

Recall the statement of Theorem 6.10.6:

For any equivalence relation R on A, the type A//R is equivalent to the set-
quotient A/R.

The proof uses implicitly the fact that A//R is a set. This fact follows imme-
diately from Theorems 7.1.8, 7.1.9 and 7.1.11 (see below) of the book. The reader
can check that the proof of Theorem 6.10.6 doesn’t use Theorems 7.1.8, 7.1.9 and
7.1.11.

For the reader’s convenience we paste the statement of Theorems 7.1.8, 7.1.9
and 7.1.11:

Theorem 7.1.8. Let n ≥ −2, and let A : U and B : A → U . If A is an n-type
and for all a : A, B(a) is an n-type, then so is

∑
x:AB(x).

Theorem 7.1.9. Let n ≥ −2, and let A : U and B : A → U . If for all a : A,
B(a) is an n-type, then so is

∏
x:AB(x).

Theorem 7.1.11. For any n ≥ −2, the type n-Type is an (n+ 1)-type.

6.9 Lemma 6.10.8

Here is a corollary to Lemma 6.10.8:

In the setting of Lemma 6.10.8, let us write q′ for the map from A to (A/∼)
denoted by q in Lemma 6.10.8. Then there are inverse maps f and g such that the
following diagram commutes:

A
q

}}

q′

""
A/∼

f // (A/∼)
g

oo

50

6.10 After Lemma 6.12.1

Let us spell out the induction principle for the higher inductive type W defined
right after Lemma 6.12.1:

Recall that we are given f, g : B → A, and that the constructors defining W
are

c : A→ W, p :
∏
b:B

(
c(f(b)) = c(g(b))

)
.

Given a type family P : W → U , the solution s :
∏

w:W P (w) to the recurrences

h :
∏
a:A

P (c(a)), q :
∏
b:B

(
h(f(b)) =P

p(b) h(g(b))
)

satisfies the computation rules

s(c(a)) :≡ h(a), apds(p(b)) := q(b)

for all a : A and all b : B.

We now spell out the induction principle for the higher inductive type W̃
defined right before Lemma 6.12.2 (the Flattening Lemma):

First recall the following:

We suppose, in addition to the above items,

• C : A→ U is a family of types over A, and

• D :
∏

b:B C(f(b)) ' C(g(b)) is a family of equivalences over B,

we define a type family P : W → U recursively by

P (c(a)) :≡ C(a), P (p(b)) := ua(D(b)),

and we let W̃ be the higher inductive type generated by

• c̃ :
∏

a:AC(a)→ W̃ and

• p̃ :
∏

b:B

∏
y:C(f(b))

(
c̃(f(b), y) =W̃ c̃(g(b), D(b)(y))

)
.

Then the induction principle for the higher inductive type W̃ takes the following
form:

51

If

Q :

(∑
x:W

P (x)

)
→ U

is a type family, then the solution

k :
∏

z:
∑

w:W P (w)

Q(z)

to the recurrences
c :
∏
a:A

∏
x:C(a)

Q(̃c(a, x))

and
p :
∏
b:B

∏
y:C(f(b))

(
p̃(b, y)? c

(
f(b), y

)
= c
(
g(b), D(b)(y)

))
satisfies

k(̃c(a, x)) ≡ c(a, x)

for all a : A and all x : C(a), as well as

apdk(p̃(b, y)) = p(b, y)

for all b : B and all y : C(f(b)).

6.11 Exercise 6.9

Recall the statement:

Assuming the Law of Excluded Middle, construct a dependent function f :∏
A:U A→ A such that f(2) : 2→ 2 is the nonidentity automorphism.

Recall that the Law of Excluded Middle is defined in (3.4.1) by

LEM :
∏
A:U

isProp(A)→ (A+ ¬A).

I learned the following argument from Jason Gross; see

https://groups.google.com/forum/#!topic/hott-cafe/Pp7AgvKr5PI.

Let A be a type. We must define f(A) : A→ A. We set

C :≡
∑

f :A→A

isequiv(f)× ¬(f = idA).

52

https://groups.google.com/forum/#!topic/hott-cafe/Pp7AgvKr5PI

In particular we have the first projection pr1 : C → A→ A. By §3.4 p. 26 we also
have

g :
∏
B:U

isProp(isContr(B)).

We define

h0 : ¬isContr(C)→ A→ A, h1 : isContr(C)→ A→ A

by setting h0(x) :≡ idA for all x : ¬isContr(C), and by letting h1(x) be the first
projection of the center of x, for all x : isContr(C). This induces a map

h :
(
isContr(C) + ¬isContr(C)

)
→ A→ A.

We finally set
f(A) :≡ h

(
LEM

(
isContr(C), g(C)

))
.

It is straightforward to check that this definition does the job. �

7 Chapter 7

7.1 Theorem 7.1.8

Here is a corollary to Theorem 7.1.8:

The fibers of a map between n-types are n-types.

For the reader’s convenience we paste the statement of Theorem 7.1.8:

Theorem 7.1.8. Let n ≥ −2, and let A : U and B : A → U . If A is an n-type
and for all a : A, B(a) is an n-type, then so is

∑
x:AB(x).

7.2 First proof of Theorem 7.2.2

We must prove

Claim. If R : X → X → Prop is a mere relation on a type X and we have

ρ :
∏
x:X

R(x, x), f :
∏
x,y:X

R(x, y)→ (x = y),

then X is a set.

53

Proof. We prove

f(x, x, ρ(x))·p = f(x, y, transportR(x)(p, ρ(x))) (59)

for p : x = y by path induction. For q : x = y we have

q = f(x, x, ρ(x))−1·f(x, y, transportR(x)(q, ρ(x)))

= f(x, x, ρ(x))−1·f(x, y, transportR(x)(p, ρ(x)))

= p,

where the second equality follows from the fact that R(x, y) is a mere proposition,
and the other equalities follow from (59). �

7.3 Lemma 7.2.8

Recall the statement of Lemma 7.2.8;

Given n ≥ −1 and X : U . If, given any inhabitant of X it follows that X is an
n-type, then X is an n-type.

Proof. Set A :≡ X and

B(a) :≡
∏
x:X

is-(n− 1)-type(a = x)

in the definition of the codiagonal map (55) p. 44. �

7.4 Induction principle for n-truncations (§7.3)

Recall that A is an arbitrary type and that n : N satisfies n ≥ −1.

We spell out the induction principle for the higher inductive type ‖A‖n.

Let ‖A‖n be defined by the three constructors

c1 : A→ ‖A‖n, c2 : (B → ‖A‖n)→ ‖A‖n, c3 :
∏

d:B→‖A‖n

∏
b:B

(
d(b) = c2(d)

)
.

Let P : ‖A‖n → U be a type family. We say that a dependent function f :∏
w:‖A‖n P (w) solves the three recurrences

r1 :
∏
a:A

P (c1(a)),

54

r2 :
∏

d:B→‖A‖n

(∏
b:B

P (d(b))

)
→ P (c2(d)),

r3 :
∏

d:B→‖A‖n

∏
e:
∏

b:B P (d(b))

∏
b:B

(
e(b) =P

c3(d,b)
r2(d, e)

)
if the computation rules

f(c1(a)) ≡ r1(a), f(c2(d)) ≡ r2(d, f ◦ d), apdf (c3(d, b)) = r3(d, f ◦ d, b)

hold for all a : A, all d : B → ‖A‖n and all b : B.

(In the book the last two computational rules are omitted.)

7.5 Defining quotients via truncations

Let R : A → A → Prop be a mere relation on a type A. Let A/′R be the higher
inductive type whose constructors are

q′ : A→ A/′R, c :
∏
a,b:A

R(a, b)→ (q′(a) = q′(b)).

In particular, the induction principle reads as follows: Given a type family P :
A/′R→ U , we say that a dependent function f :

∏
x:A/′R P (x) satisfies the recur-

rences
r :
∏
a:A

P (q′(a)), s :
∏
a,b:A

∏
u:R(a,b)

(
r(a) =P

c(a,b,u) r(b)
)

if the computation rules

f(q′(a)) ≡ r(a), apdf (c(a, b, u)) = s(a, b, u)

hold for all a, b : A and all u : R(a, b).

Now we can define the quotient A/R by A/R :≡ ‖A/′R‖0.

7.6 Proof of Theorem 7.3.2

Claim. Let n ≥ −1 and let A be a type. Then A is an n-type if and only if the
type

Map?
(
(Sn+1, base), (A, a)

)
is contractible for all a : A.

55

Proof. Use Theorem 7.2.9 (see below) and the equivalence

Map?
(
(Sn+1, base), (A, a)

)
' Ωn+1(A, a)

at the end of §6.5 of the book. �

We verify the existence of u and v in the proof of Theorem 7.3.2 as follows.
We define t : Sn+1 → P (h(r)) as in the book, we set h′(r, r′) :≡ u :≡ t(base), we
define cu : Sn+1 → P (h(r)) by cu(x) :≡ u for all x : Sn+1, and we set

M :≡ Map?

((
Sn+1, base

)
,
(
P (h(r)), u

))
.

Since (t, reflu), (cu, reflu) : M and M is contractible, there is a path v : t = cu. �

For the reader’s convenience we paste the statement of Theorem 7.2.9:

Theorem 7.2.9. For every n ≥ −1, a type A is an n-type if and only if Ωn+1(A, a)
is contractible for all a : A.

7.7 Proof of Theorem 7.3.5

Theorem 7.3.5 (see below) can also be proved by path induction.

For the reader’s convenience we paste the statement of Theorem 7.3.5:

Theorem 7.3.5. Given f, g : A → B and a homotopy h : f ∼ g, there is an
induced homotopy ‖h‖n : ‖f‖n ∼ ‖g‖n such that the composite

|f(a)|n
natfn(a)

−1

‖f‖n(|a|n)
‖h‖n(|a|n) ‖g‖n(|a|n)

natgn(a) |g(a)|n (60)

is equal to ap|−|n(h(a)).

7.8 Proof of Theorem 7.3.12

The proof uses various times the principle of double induction for n-truncation,
principle which we spell out here.

Recall the simple induction principle:

To each couple (P, f) with P : ‖A‖n → n-Type and f :
∏

x:A P (|x|n) is attach
a section f ′ :

∏
u:‖A‖n P (u) satisfying f ′(|x|n) ≡ f(x) for all x : A.

The double induction principle says:

56

To each couple (P, f) with

P : ‖A‖n → ‖A‖n → n-Type

and f :
∏

x,y:A P (|x|n, |y|n) is attach a section f ′′ :
∏

u,v:‖A‖n P (u, v) satisfying
f ′′(|x|n, |y|n) ≡ f(x, y) for all x, y : A.

We derive the double induction principle from the simple induction principle
as follows. From

f :
∏
x:A

(∏
y:A

P (|x|n, |y|n)

)
we get

f ′ :
∏

u:‖A‖n

(∏
y:A

P (u, |y|n)

)
satisfying f ′(|x|n)(y) ≡ f(x, y) for all x, y : A. From f ′(u) :

∏
y:A P (u, |y|n) we get

f ′(u)′ :
∏

v:‖A‖n P (u, v) satisfying f ′(u)′(|y|n) ≡ f ′(u, y) for all u : ‖A‖n and all
y : A. As we have

f ′(|x|n)′(|y|n) ≡ f ′(|x|n)(y) ≡ f(x, y)

for all x, y : A, we can set f ′′(u, v) :≡ f ′(u)′(v) for all u, v : ‖A‖n. �

It seems to me that the equality

encode(decode(|p|n)) = |p|n

can be proved by path induction on p : x = y.

7.9 Paths between cocones

The following observation might be made just after Definition 7.4.2:

If (i, j, h) and (i′, j′, h′) are cocones under D with base D, then a path (i, j, h) =
(i′, j′, h′) is given by attaching to each c : C a path p(c) : i(f(c)) = i′(f(c)), a path
q(c) : j(g(c)) = j′(g(c)), and a path r(c) : p(c)·h′(c) = h(c)·q(c):

i(f(c))
h(c)

p(c)

j(g(c))

q(c)

i′(f(c))
h′(c)

j′(g(c)).

57

7.10 Definition 7.4.7

The setting can be summarized by the diagram

C
g //

f
��

B

j
��

A
i
//

h

:B

D,

where the double arrow represents a homotopy h : i ◦ f ∼ j ◦ g.

Definition 7.4.7 contains the judgment

‖h‖n : ‖i‖n ◦ ‖f‖n ∼ ‖j‖n ◦ ‖g‖n.

(See (60) p. 56.) In fact we have ‖h‖n : ‖i ◦ f‖n ∼ ‖j ◦ g‖n. Here is a fix.

Given the commutative diagram

A
f //

��

B
g //

��

C

��
‖A‖n ‖f‖n

// ‖B‖n ‖g‖n
// ‖C‖n,

where the vertical maps are the obvious ones, we define

ϕg,fn : ‖g‖n ◦ ‖f‖n ∼ ‖g ◦ f‖n

by the commutative square

‖g‖n‖f‖n|a|n
ϕg,f
n (|a|n)

ap‖g‖n (natfna)
‖g‖n|fa|n

natgn(fa)

‖gf‖n|a|n
natgfn (a)

|gfa|n,

that is, we set

ϕg,fn (|a|n) :≡ ap‖g‖n(natfna)·natgn(fa)·(natgfn (a))−1.

(We assume a : A, and omit most of the parenthesis.)

Going back to Definition 7.4.7, we may define ‖c‖n as being (‖i‖n, ‖j‖n, h′n),
where h′n is the homotopy obtained by composing the three homotopies

‖i‖n ◦ ‖f‖n
ϕi,f
n∼ ‖i ◦ f‖n

‖h‖n∼ ‖j ◦ g‖n
(ϕj,g

n)−1

∼ ‖j‖n ◦ ‖g‖n.

58

7.11 Equality (7.4.11)

The setting can be summarized by the diagram

C
g //

f
��

B

j
��

A
i
//

h

:B

D,

where the double arrow represents a homotopy h : i ◦ f ∼ j ◦ g. Equality (7.4.11)
reads |−|Dn ◦ c = ‖c‖n ◦ |−|Dn , and, by §7.9 p. 57, is equivalent to(

|−|Dn ◦ i , |−|Dn ◦ j , ap|−|Dn ◦ h
)

=
(
‖i‖n ◦ |−|An , ‖j‖n ◦ |−|Bn , k

)
, (61)

where k is the homotopy from ‖i‖n ◦ |−|An ◦ f to ‖j‖n ◦ |−|Bn ◦ g such that k(z) is,
for all z : C, the composite path

‖i‖|fz| ‖i‖‖f‖|z|
ap‖i‖(natf z)−1

h′|z| ‖j‖‖g‖|z|
ap‖j‖(natgz)

‖j‖|gz|.

(Here and in the sequel of this section we drop the subscripts n, the superscripts
A,B,C,D, and most of the parenthesis.) In turn, (61) is equivalent to the com-
mutativity of the diagram

‖i‖|fz|

refl

kz ‖j‖|gz|

refl

‖i‖|fz|
nati(fz)

‖i‖‖f‖|z|
ap‖i‖(natf z)−1

ϕ‖i‖,‖f‖(|z|)

h′|z| ‖j‖‖g‖|z|

ϕ‖j‖,‖g‖(|z|)

ap‖j‖(natgz)
‖j‖|gz|

natj(gz)

|ifz| ‖if‖|z|
‖h‖|z|natif (z)−1

‖jg‖|z|
natjg(z)

|jgz|

|ifz|

refl

ap|−|(hz)
|jgz|

refl

for all z : C. The upper rectangle commutes by definition of k, the small squares
commute by §7.10 above, and the lower rectangle commutes by Lemma 7.3.5 in
the book (see (60) p. 56).

7.12 Definition 7.5.1

The following observation, which is an immediate consequence of Corollary 7.3.7,
can be made right after Definition 7.5.1:

59

Let A be a type and let n : N. Then A is contractible if and only if A is an
n-connected n-type.

7.13 Proof of Lemma 7.5.10

Here is the statement of Lemma 7.5.10:

Lemma 7.5.10. Let B be an n-type and let f : A → B be a function. Then the
induced function g : ‖A‖n → B is an equivalence if and only if f is n-connected.

Here is a pasting of the proof given in the book, proof to which the two paren-
thesis has been added:

Proof. By Corollary 7.5.8, | − |n is n-connected. Thus, since f = g ◦ | − |n, by
Lemma 7.5.6 f is n-connected if and only if g is n-connected. But since g is a
function between n-types, its fibers are also n-types (see §7.1 p. 53 above). Thus,
g is n-connected if and only if it is invertible (see §7.12 above).

7.14 Proof of Lemma 7.5.11

The sentence

“Then P is a family of (n−1)-types and we have P (a0); hence we have
∏

(a:A) P (a)

since a0 : 1→ A is (n− 1)-connected”

follows from Lemma 7.5.7, implication (i) ⇒ (iii), in the book.

7.15 Comment before Lemma 7.5.12

The comment

In particular, a pointed type (A, a0) is 0-connected if and only if a0 : 1 → A is
surjective, which is to say

∏
x:A‖x = a0‖

before Lemma 7.5.12 implies that the pointed circle (S1, base) is 0-connected.

7.16 Lemma 7.6.5

In the last display of the statement of Lemma 7.6.5, the identification E(H, a) is
a path in the fiber fibh2(h1(g1(a))) of h2 over h1(g1(a)).

60

8 Chapter 8

8.1 Proof of Theorem 8.2.1

The equality ‖‖A‖n+1‖n = ‖A‖n follows from Lemma 7.3.15.

8.2 Proof of Lemma 8.3.2 and Corollary 8.4.8

The equality ‖Ωk(A, a)‖0 = Ωk(‖(A, a)‖k) in the proof of Lemma 8.3.2 follows from
Corollary 7.3.14. A similar argument is used in the proof of Corollary 8.4.8. The
proof of Corollary 8.4.8 also uses Lemma 7.3.15.

8.3 Lemma 8.5.9

Recall the statement:

Lemma 8.5.9. The operation of join is associative: if A, B and C are three types
then we have an equivalence (A ∗B) ∗ C ' A ∗ (B ∗ C).

Claim. For all a :A, b :B, c :C there is a path

glue(a, inl(b))−1·glue(a, inr(c)) = inr(glue(b, c))

in inr(inl(b)) =A∗(B∗C) inr(inr(c)).

Proof of the claim. Define P : B ∗C → U by P (x) :≡ (inl(a) =A∗(B∗C) inr(x)). We
get successively

glue(a,−) :
∏
x:B∗C

P (x),

apdglue(a,−)(glue(b, c)) : glue(a, inl(b)) =P
glue(b,c) glue(a, inr(c)),

apdglue(a,−)(glue(b, c)) : transportP (glue(b, c), glue(a, inl(b))) = glue(a, inr(c)),

and thus

glue(a, inl(b))·inr(glue(b, c)) = transportP (glue(b, c), glue(a, inl(b)))

= glue(a, inr(c)),

where the last path is apdglue(a,−)(glue(b, c)). �

The proof below differs from the proof in the book only by a few details.

61

Proof of Lemma 8.5.9. We define a map f : (A∗B)∗C → A∗(B∗C) by induction.
We first need to define f ◦ inl : A ∗B → A ∗ (B ∗C) and f ◦ inr : C → A ∗ (B ∗C),
which will be done by induction, and then

apf ◦ glue :
∏

t:(A∗B)×C

f(inl(pr1(t))) = f(inr(pr2(t))), (62)

which will be done by induction on the first component of t.

First we define f ◦ inl : A ∗B → A ∗ (B ∗ C) and f ◦ inr : C → A ∗ (B ∗ C) by

(f ◦ inl)(inl(a))) :≡ inl(a),

(f ◦ inl)(inr(b))) :≡ inr(inl(b)),

(f ◦ inl)(glue(a, b)) := glue(a, inl(b)), (63)

f(inr(c)) :≡ inr(inr(c)).

We start the definition of (62).

Let c : C and define Q : A ∗B → U by

Q(x) :≡
(
f(inl(x)) =A∗(B∗C) f(inr(c))

)
,

that is,
Q(x) :≡

(
f(inl(x)) =A∗(B∗C) inr(inl(b))

)
.

We first define
g :

∏
x:A∗B

Q(x). (64)

Let a : A and define g1(a) : Q(a), that is

g1(a) : inl(a) =A∗(B∗C) inr(inr(c)),

by g1(a) :≡ glue(a, inr(c)). Let b : B and define g2(b) : Q(b), that is

g2(b) : inr(inl(b)) =A∗(B∗C) inr(inr(c)),

by g2(b) :≡ inr(glue(b, c)). Let a :A, b :B and define

g3(a, b) : g1(a) =Q
glue(a,b) g2(b),

that is
g3(a, b) : glue(a, inr(c)) =Q

glue(a,b) inr(glue(b, c)),

62

that is

g3(a, b) : transportQ(glue(a, b), glue(a, inr(c))) = inr(glue(b, c)),

as being the composite of the paths

transportQ(glue(a, b), glue(a, inr(c))) = f(inl(glue(a, b)−1))·glue(a, inr(c))

= glue(a, inl(b))−1·glue(a, inr(c)) = inr(glue(b, c)),

where the last two paths are respectively given by (63) and the claim. Then we
get a dependent function g as in (64) satisfying

g(inl(a)) ≡ g1(a), g(inr(b)) ≡ g2(b), apdg(glue(a, b)) = g3(a, b)

for all a : A and all b : B.

We can set f(glue(x, c)) := g(x) for all x : A ∗ B, so that f(glue(t)) is now
defined for all t : (A ∗B)× C. This completes the definition of (62).

We get our desired map f : (A ∗B) ∗C → A ∗ (B ∗C). Similarly, we can define
a map h : A ∗ (B ∗ C) → (A ∗ B) ∗ C, and checking that f and h are inverse to
each other is a long and tedious but essentially straightforward computation. �

8.4 Theorem 8.5.11

The proof of Theorem 8.5.11 uses implicitly the 0-connectedness of the circle S1,
0-connectedness which has been observed in §7.15 p. 60 above.

8.5 Proof of Definition 8.6.5

The penultimate sentence of the proof of Definition 8.6.5 is

“To show that it is a family of equivalences, since being an equivalence is a mere
proposition and x0 : 1 → X is (at least) (−1)-connected, it suffices to assume x1
is x0.”

This follows from Lemma 8.6.1 (even from Lemma 7.5.7).

8.6 Lemma 8.6.10

Recall the statement:

63

Lemma 8.6.10. Let A : U , B : A → U , and C :
∏

a:AB(a) → U , and also
a1, a2 : A with m : a1 = a2 and b : B(a2). Then the function

transportĈ(pair=B(m, t),−) : C(a1, transportB(m−1, b))→ C(a2, b),

where t : transportB(m, transportB(m−1, b)) = b is the obvious coherence path and
Ĉ : (

∑
a:AB(a)) → U is the uncurried form of C, is equal to the equivalence

obtained by univalence from the composite

C(a1, transportB(m−1, b)) = transportλa.(B(a)→U)(m,C(a1))(b)

= C(a2, b),

where the paths are respectively given by (2.9.4) and happly(apdC(m), b).

(I have written pair=B instead of pair= to stress the fact that this operation is
taken with respect to the type family B.)

Here is a minor rephrasing:

If p : C(a1, transportB(m−1, b)) = C(a2, b) is the above path, then we have a path

transportZ 7→Z(p) = transportĈ(pair=B(m, t)).

in C(a1, transportB(m−1, b))→ C(a2, b).

8.7 Proof of Theorem 8.6.4

Theorem 8.6.4 is proved just before the statement of Corollary 8.6.14. The last
display of the proof contains eight underscores; denote them by u1, . . . , u8. We
read, after the display:

“. . . the underscore ought to be filled in with suitable coherence paths. Here the
first step is functoriality of transport, the second invokes (8.6.12), and the third
invokes (8.6.11) (with transport moved to the other side). Thus we have the same
first component as the left-hand side of (8.6.13). We leave it to the reader to verify
that the coherence paths all cancel, giving reflexivity in the second component.”

To fill in the underscores, we introduce the following notation: If p : y1 = y2
and q : N = y1 are paths in ΣX, we denote by

α(p, q) : transportN=−(p, q) = q·p
the obvious path in N = y2. If y1 ≡ N and q ≡ reflN , we define

β(p) : transportN=−(p, reflN) = p

64

by β(p) :≡ α(p, reflN)·ω, where ω : reflN·p = p is the obvious path in N = y2. We
also denote by

γ : merid(x0)·merid(x0)
−1 = reflN

the obvious path in N = N .

The underscores u1, . . . , u8 can be chosen as follows:

u1 :≡ β(merid(x1)·merid(x0)
−1), u2 :≡ u5 :≡ γ,

u3 :≡ u6 :≡ α(merid(x0)
−1,merid(x1)), u4 :≡ β(merid(x1)),

u7 :≡ reflmerid(x1), u8 :≡ reflmerid(x1)·merid(x0)−1 .

In other words, abbreviating transport
ˆcode by t, merid by m, pair= by p, refl by r,

we get

t

(
p

(
m(x1)·m(x0)

−1, β
(

m(x1)·m(x0)
−1
))

,

∣∣∣∣(x0, γ)

∣∣∣∣
2n

)

= t

(
p

(
m(x0)

−1, α
(

m(x0)
−1,m(x1)

))
, t

(
p
(

m(x1), β
(
m(x1)

))
,
∣∣∣(x0, γ)

∣∣∣
2n

))

= t

(
p

(
m(x0)

−1, α
(

m(x0)
−1,m(x1)

))
,

∣∣∣∣(x1, rm(x1))

∣∣∣∣
2n

)

=
∣∣(x1, rm(x1)·m(x0)−1)

∣∣
2n
.

For the reader’s convenience we spell out the following judgments:

code(N, p) :≡

∥∥∥∥∥∑
x:X

(
m(x)·m(x0)

−1 = p
)∥∥∥∥∥

2n

for p : N = N ,

65

|(x0, γ)|2n : code(N, rN),

p

(
m(x1)·m(x0)

−1, β
(

m(x1)·m(x0)
−1
))

: (N, rN) = (N,m(x1)·m(x0)
−1),

p

(
m(x1), β

(
m(x1)

))
: (N, rN) = (S,m(x1)),

p

(
m(x0)

−1, α
(

m(x0)
−1,m(x1)

))
: (S,m(x1)) = (N,m(x1)·m(x0)

−1),

code(S, q) :≡

∥∥∥∥∥∑
x:X

(
m(x) = q

)∥∥∥∥∥
2n

for q : N = S,

|(x1, rm(x1)))|2n : code(S,m(x1)),

|(x1, rm(x1)·m(x0)−1))|2n : code(N,m(x1)·m(x0)
−1).

8.8 Proofs of Theorem 8.8.1 and Corollary 8.8.2

The assertions “hence ‖f(a) = b‖−1” in the proof of Theorem 8.8.1 and “hence
‖x = y‖−1” in the proof of Corollary 8.8.2 follow from Theorem 7.3.12.

8.9 Proof of Corollary 8.8.5

8.9.1 First part

The first part of the proof of Corollary 8.8.5 uses implicitly the following fact:

If C is a pointed type and k, n : N satisfy 0 ≤ k ≤ n, then we have

πk(C) = πk(‖C‖n).

66

Proof. We have

πk(C) = Ωk(‖C‖k) = Ωk(‖‖C‖n‖k) = πk(‖C‖n),

the three equalities resulting respectively from Corollary 7.3.14, Lemma 7.3.15 and
Corollary 7.3.14 again. �

Let us spell out the proof of the contractibility of ‖fibf (f(a))‖n. Lemma 7.3.15
yields

‖‖fibf (f(a))‖n‖0 = ‖fibf (f(a))‖0,

and we already know that ‖fibf (f(a))‖0 is contractible. As a result, ‖fibf (f(a))‖n
is 0-connected, and Corollary 8.8.4 implies that ‖fibf (f(a))‖n is contractible. �

8.9.2 Second part

In the second part of the proof of Corollary 8.8.5, the assertion “therefore ‖b =
f(a)‖−1” follows from Theorem 7.3.12.

8.10 Exercise 8.7

Statement. Define a pointed equivalence to be a pointed map whose underlying
function is an equivalence.

1. Show that the type of pointed equivalences between pointed types (X, x0)
and (Y, y0) is equivalent to (X, x0) =U• (Y, y0).

2. Reformulate the notion of pointed equivalence in terms of a pointed quasi-
inverse and pointed homotopies, in one of the coherent styles from Chapter 4.

Solution. It might help the reader to take a look at §2.4 p. 15 above. The first
idea would be to define the type (X, x0) ' (Y, y0) as being∑

f :(X,x0)→(Y,y0)

isequiv(pr1(f)),

but we prefer the equivalent definition

((X, x0) ' (Y, y0)) :≡
∑

f1:X→Y

isequiv(f1)× (f1(x0) = y0).

67

We shall define the maps a, b and c in the diagram

(X, x0) = (Y, y0)

pr1
��

a // (X, x0) ' (Y, y0)
b

oo

��
c

��

X = Y X ' Y

We define a by path induction in the obvious way. We define c by the formula

c(f1, u, f0) :≡ (f1, u).

We define b by setting

b(f1, u, f0) :≡
(

ua(f1, u), q(f1, u)·f0),
where q(f1, u) is the obvious path from p1?(x0) to f1(x0) in Y . We claim that a
and b are inverse. We prove

b ◦ a = id(X,x0)=(Y,y0)

by path induction. Let us check

a ◦ b = id(X,x0)'(Y,y0).

Let (f1, u, f0) : (X, x0) ' (Y, y0). We must show

a
(

ua(f1, u), q(f1, u)·f0) = (f1, u, f0). (65)

Defining p1 : X = Y by p1 :≡ ua(f1, u), Equality (65) is equivalent to

a

(
p1, q

(
idtoeqv(p1)

)·f0) = (p1, f0),

which is easily proved by path induction on p1.

9 Chapter 9

9.1 Theorem 9.2.5

In the penultimate paragraph of the proof of Theorem 9.2.5, one can also argue
by path induction.

68

9.2 Lemma 9.2.8

To prove Lemma 9.3.2 (see §9.3 below) the following two lemmas might be useful.
(Lemma 1 below is a mild generalization of Lemma 9.2.8.)

Lemma 1. In the diagram below, A,B,C,D are precategories; F,G : A → B,
H,K : C → D and L : B → C are functors; γ : F → G and δ : H → K are
natural transformations:

H F
← L ←

D δ ↓ C ← B γ ↓ A,
← ←
K G

We have, in the above setting,

(δLG)(HLγ) = (KLγ)(δLF). (66)

Proof. It suffices to check componentwise: at a : A we have

((δLG)(HLγ))a ≡ (δLG)a(HLγ)a

≡ δLGa ◦HL(γa)

= KL(γa) ◦ δLFa by naturality of δ
≡ (KLγ)a ◦ (δLF)a

≡ ((KLγ)(δLF))a. �

Equality (66) can be illustrated by the commutative square

HLF
(HLγ) //

(δLF)
��

HLG

(δLG)
��

KLF
(KLγ)

// KLG.

Lemma 2. In the diagram below, A,B,C,D are precategories; F : A → B,
G,H,K : B → C and L : C → D are functors; α : G → H and β : H → K are

69

natural transformations:

Koo

D C
Loo

β

OO

B
Hoo A.

Foo

α

OO

G
oo

We have, in the above setting,

(LβF)(LαF) = L(βα)F. (67)

Proof. It suffices to check componentwise: at a : A we have

((LβF)(LαF))a ≡ (LβF)a(LαF)a

≡ L(βFa) ◦ L(αFa)

= L(βFa ◦ αFa)
= L((βα)Fa)

= (L(βα)F)a. �

70

9.3 Lemma 9.3.2

In the notation of §9.2 above, the diagrams and equalities below (which follow
from (66) above) will help us verify the equality δγ = 1G in the proof of Lemma
9.3.2:

1A FG
← G′ ←

A η ↓ A ← B ε ↓ B,
← ←
GF 1B

(η G′ 1B)(1A G
′ ε) = (GF G′ ε)(η G′ FG), (68)

G′FG
(1A G′ ε) //

(η G′ FG)
��

G′

(η G′ 1B)
��

GFG′FG
(GF G′ ε)

// GFG′,

FG′ FG
← 1B ←

B ε′ ↓ B ← B ε ↓ B,
← ←
1B 1B

(ε′ 1B 1B)(FG′ 1B ε) = (1B 1B ε)(ε′ 1B FG), (69)

FG′FG
(FG′ 1B ε) //

(ε′ 1B FG)
��

FG′

(ε′ 1B 1B)

��
FG

(1B 1B ε)
// 1B,

71

1A 1A
← 1A ←

A η ↓ A ← A η′ ↓ A,
← ←
GF G′F

(η 1A G
′F)(1A 1A η

′) = (GF 1A η
′)(η 1A 1A), (70)

1A
(1A 1A η′) //

(η 1A 1A)
��

G′F

(η 1A G′F)
��

GF
(GF 1A η′)

// GFG′F.

Here is the verification of the equality δγ = 1G in the proof of Lemma 9.3.2
announced at the beginning of this section:

δγ ≡ (Gε′)(ηG′)(G′ε)(η′G)

= (Gε′)(GFG′ε)(ηG′FG)(η′G) by (68)
= G (ε′ (FG′ε)) ((ηG′F) η′)G by (67)
= G (ε (ε′FG)) ((GFη′) η)G by (69) and (70)
= G (ε (ε′F)) ((Fη′) η)G by (67)
= (Gε)(ε′F)(Fη′)(ηG)

= (Gε)(ηG) by ∆1

= 1G by ∆2,

where ∆1 and ∆2 denote the first and second triangle identity.

9.4 Proof of Lemma 9.4.9

• The following observation, which could be made just before Definition 9.2.3, is
used in the proof of Lemma 9.4.9.

In the setting of Definition 9.2.1, let p : F0 = G0; for each a : A0 let pa :
Fa = Ga be the induced path; let a, a′ : A0; and define P : (A0 → B0) → U by
P (f) :≡ (homA(a, a′)→ homB(fa, fa′)). Then we have

p?(Fa,a′)(g) = idtoiso(pa′) ◦ Fa,a′(g) ◦ idtoiso((pa)
−1)

72

for all g : homA(a, a′).

• In the penultimate paragraph of the proof of Lemma 9.4.9, the phrase “the other
triangle identity, which we have seen in Chapter 4 is equivalent to (9.4.11)” refers
(I think) to Lemma 4.2.2.

10 Chapter 10

10.1 A Lemma

Recall the notion of image (Definition 7.6.3 of the book):

Definition 7.6.3. Let f : A→ B be a function. The n-image of f is defined as

imn(f) :≡
∑
b:B

‖fibf (b)‖n.

When n = −1, we write simply im(f) and call it the image of f .

The following lemma, whose proof is straightforward, will be used in §10.2
below.

Lemma. Let f : A→ B be a map. Assume that B is a set. Then im(f) is a mere
proposition if and only if f(a) = f(a′) for all a, a′ : A.

Proof. Suppose im(f) is a mere proposition and let a, a′ : A. As(
f(a), |(a, reflf(a))|

)
,
(
f(a′), |(a′, reflf(a′))|

)
: im(f),

we have f(a) = f(a′). Conversely, assume f(a) = f(a′) for all a, a′ : A. Let
x, x′ : im(f). We claim x = x′. We may suppose x ≡ (b, u), x′ ≡ (b′, u′) (obvious
notation). It suffices to show b = b′. As b = b′ is a mere proposition, we may
assume u ≡ |(a, p)| and u′ ≡ |(a′, p′))| with

a, a′ : A, p : f(a) = b, p′ : f(a′) = b′.

This implies b = b′, as required. �

10.2 Before Lemma 10.1.1

This is about the sentence “The obvious candidate for the coequalizer of the kernel
pair of f : A → B is the image of f , as defined in §7.6” a few paragraphs before

73

Lemma 10.1.1. (It is clear from the context that A and B are sets.) Let us show
that this obvious candidate is the good one. By Lemma 4.8.2 of the book (see §4.6
p. 35) it suffices to prove the following statement:

If B : A → Set is a set family over a set A and ∼ is the equivalence relation
on
∑

a:AB(a) defined by

(a, b) ∼ (a′, b′) if and only if a = a′,

then the resulting quotient satisfies(∑
a:A

B(a)

)/
∼ =

∑
a:A

‖B(a)‖.

Proof. Let us define a map

h :

(∑
a:A

‖B(a)‖

)
→

(∑
a:A

B(a)

)/
∼ .

It suffices to define, keeping a0 : A fixed, the object h(a0, β) for all β : ‖B(a0)‖.
Define

f : B(a0)→

(∑
a:A

B(a)

)/
∼

by f(b) :≡ q(a0, b) for all b : B(a0), and let

f̃ : B(a0)→ im(f), pr1 : im(f)→

(∑
a:A

B(a)

)/
∼

be the canonical factorization of f (see Lemma 7.6.4 of the book). The lemma
in §10.1 above implies that im(f) is a mere proposition. As a result, f̃ induces a
map g : ‖B(a0)‖ → im(f) satisfying g(|b|) ≡ f(b) for all b : B(a0), and we can set
h(a0, β) :≡ pr1(g(β)) for all b : B(a0).

We leave it to the reader to check, using §7.5 above, that h is invertible. �

10.3 Proof of Lemma 10.1.13

To prove the equality merid?(τ(N)) = τ(S), one can use the following lemma,
whose proof is straightforward:

74

Lemma. Let P : A→ B → U be a type family, define Q : A→ U by

Q(a) :≡
∏
b:B

P (a, b),

let p : a = a′ be a path in A, let f : Q(a), and let b : B. Then we have

transportQ(p, f)(b) = transportP (−,b)(p, f(b)).

10.4 The induction principle for acc (§10.3)

Here is a first particular case of the general induction principle for acc:

If we have a type family P : A→ U and

f :
∏
a:A

(∏
b:A

(b < a)→ acc(b)× P (b)

)
→ P (a),

then we get
g :
∏
a:A

acc(a)→ P (a)

with

g
(
a, acc<(a, pr1 ◦ u)

)
≡ f

(
a , λb.λl.

(
pr1u(b, l) , g

(
b, pr1u(b, l)

)))
for all a : A and all u :

∏
b:A (b < a)→ acc(b)× P (b).

Here is a second particular case:

If < is well-founded, if we have a type family P : A→ U , and if we have

f :
∏
a:A

(∏
b:A

(b < a)→ P (b)

)
→ P (a), (71)

then we get g :
∏

a:A P (a) with g(a) ≡ f(a, λb.λl.g(b)) for all a : A.

(We are using Lemma 10.3.2 of the book.)

10.5 Lemma 10.3.7

Here is a minor variant:

75

Suppose P is a set and we have a function h : (P → Prop) → P . Then if < is a
well-founded relation on A, there is a function g : A → P such that for all a : A
we have

g(a) ≡ h ({g(b) | b < a}) ,
where {g(b) | b < a} : P → Prop maps p : P to

∃ (b : A) . (g(b) = p) ∧ (b < a).

Proof. We shall use the induction principle containing Display (71) above. Define

f :
∏
a:A

(∏
b:A

(b < a)→ P

)
→ P

by
f(a, s) :≡ h({s(b, l) | l : b < a}),

where {s(b, l) | l : b < a} : P → Prop maps p : P to

∃ (b : A) . ∃ (l : b < a) . s(b, l) = p.

We get
g(a) ≡ f(a, λb.λl.g(b)) ≡ h({g(b) | b < a}). �

10.6 Lemma 10.3.8

Recall the statement:

Assuming excluded middle, < is well-founded if and only if every nonempty subset
B : P(A) merely has a minimal element.

Here is a slightly different phrasing of the proof.

Proof. Suppose first < is well-founded and A has no minimal element. That is,
for any a : A there merely exists a b : A with b < a. We shall show A = 0. We
first claim ∏

a:A

(∏
a′:A

(a′ < a)→ 0

)
→ 0. (72)

Let a : A and s :
∏

a′:A(a′ < a) → 0. It suffices to prove 0. As observed above,
there is a b : A and an l : b < a, yielding s(b, l) : 0. This proves (72). Then

∏
a:A 0,

that is A→ 0, follows by well-founded induction, and implies A = 0.

Now suppose that each nonempty subset merely has a minimal element, and
assume that an inaccessible a0 : A merely exists. As it suffices to prove 0, we

76

can assume that a0 exists purely, and that it is minimal for the property of being
inaccessible, which means that we have an h :

∏
b:A(b < a0) → acc(b), yielding

acc<(a0, h) : 0, as required. �

10.7 Lemma 10.3.12

Recall the statement: Any simulation is injective.

Here is a slightly different phrasing of the proof:

Proof. We prove by well-founded induction on a : A that for any b : A, if f(a) =
f(b) then a = b. The inductive hypothesis for a : A says that for any a′ < a, and
any b : A, if f(a′) = f(b) then a′ = b.

Suppose f(a) = f(b); we must show a = b. By extensionality, it suffices to
show that for any c : A we have (c < a)⇔ (c < b).

If c < a, then f(c) < f(a) by Definition 10.3.11(i) (see §3.4 p. 26). Hence
f(c) < f(b), so by Definition 10.3.11(ii) there merely exists c′ : A with c′ < b and
f(c) = f(c′). By the inductive hypothesis for a, we have c = c′, hence c < b.

If c < b, then f(c) < f(b) by Definition 10.3.11(i). Hence f(c) < f(a), so by
Definition 10.3.11(ii) there merely exists c′ : A with c′ < a and f(c) = f(c′). By
the inductive hypothesis for a, we have c = c′, hence c < a. �

10.8 Theorem 10.4.4

In the proof of Theorem 10.4.4 the notation {f(x) | P (x)}, introduced after Lemma
10.1.6, is used a lot.

11 Chapter 11

11.1 The definition of Q (§11.1)

The type Q is defined in §11.1 as Q :≡ (Z× N)/ ≈, where ≈ is defined by

(u, a) ≈ (v, b) :≡ (u(b+ 1) = v(a+ 1)).

One may add something like “We leave it to the reader to check that ≈ is an
equivalence relation”.

77

11.2 §11.2.1

The following observation could be made just before Lemma 11.2.2:

For x, y : Rd the inequality x < y implies x 6= y. Moreover the map f : Q → Rd,
q 7→ (Lq, Uq) satisfies

f(q) < f(r) ⇐⇒ q < r and f(q) ≤ f(r) ⇐⇒ q ≤ r.

11.3 Corollary to Lemma 11.2.2

If q, r : Q and q < r and x : Rd, then we merely have q < x or x < r by locatedness.

11.4 Proof of Theorem 11.2.12

The claim “Since q + 2ε < r − 2ε merely Lxε(q + 2ε) or Uxε(q − 2ε)” follows from
§11.3 above.

12 Appendix A

It seems to me that the expression λx.b is defined in two conflicting ways, firstly
at the beginning of A.1, and secondly in the last sentence of A.2.4.

78

	Chapter 1
	Path induction implies based path induction, §1.12.2
	Exercise 1.3
	Exercise 1.5
	Exercise 1.6
	Exercise 1.8
	Exercise 1.10
	Exercise 1.13

	Chapter 2
	Theorem 2.7.2
	Comment after Corollary 2.7.3
	Theorem 2.7.4
	Commutative diagram summarizing §§ 2.9 and 2.10
	Function Extensionality Axiom (§2.9)
	Part 1
	Part 2
	Part 3

	Definition of the map happly in (2.9.2)
	Display preceding (2.9.5)
	Lemma 2.9.7
	Proof of Theorem 2.11.1
	Proof of Theorem 2.12.5
	Double induction in §2.13
	Section 2.14.1
	Use of Theorem 2.7.4
	A general comment

	Exercise 2.7
	Exercise 2.10
	Exercise 2.14

	Chapter 3
	Proof of Lemma 3.1.8
	Theorem 3.2.2
	Proof of Lemma 3.3.4
	Contractibility (§3.11)
	Proof of Lemma 3.11.4
	Proof of Lemma 3.11.8
	Exercise 3.5
	Exercise 3.6
	Exercise 3.7
	Exercise 3.9
	Exercise 3.17
	Exercise 3.18

	Chapter 4
	Proof of Lemma 4.1.2
	Proof of Lemma 4.2.11
	Proof of Lemma 4.7.3
	Proof of Theorem 4.7.6
	Proof of Lemma 4.8.1
	Proof of Lemma 4.8.2
	Proof of Theorem 4.8.3
	Proof of Theorem 4.8.4
	Exercise 4.4
	Exercise 4.5
	Exercise 4.6 (iii)

	Chapter 5
	Induction principle for W-types (§5.3)
	Second bullet of §5.6
	Before Remark 5.6.3
	Displays (5.6.4)–(5.6.7)
	Proof of Theorem 5.8.2
	Proof of Theorem 5.8.4 (iii)

	Chapter 6
	Display (6.2.2)
	Lemma 6.4.1
	Proof of Corollary 6.4.3
	Proof of Lemma 6.5.1
	Section 6.8
	Section 6.9
	Notion of quotient (beginning of §6.10)
	Proof of Theorem 6.10.6
	Lemma 6.10.8
	After Lemma 6.12.1
	Exercise 6.9

	Chapter 7
	Theorem 7.1.8
	First proof of Theorem 7.2.2
	Lemma 7.2.8
	Induction principle for n-truncations (§7.3)
	Defining quotients via truncations
	Proof of Theorem 7.3.2
	Proof of Theorem 7.3.5
	Proof of Theorem 7.3.12
	Paths between cocones
	Definition 7.4.7
	Equality (7.4.11)
	Definition 7.5.1
	Proof of Lemma 7.5.10
	Proof of Lemma 7.5.11
	Comment before Lemma 7.5.12
	Lemma 7.6.5

	Chapter 8
	Proof of Theorem 8.2.1
	Proof of Lemma 8.3.2 and Corollary 8.4.8
	Lemma 8.5.9
	Theorem 8.5.11
	Proof of Definition 8.6.5
	Lemma 8.6.10
	Proof of Theorem 8.6.4
	Proofs of Theorem 8.8.1 and Corollary 8.8.2
	Proof of Corollary 8.8.5
	First part
	Second part

	Exercise 8.7

	Chapter 9
	Theorem 9.2.5
	Lemma 9.2.8
	Lemma 9.3.2
	Proof of Lemma 9.4.9

	Chapter 10
	A Lemma
	Before Lemma 10.1.1
	Proof of Lemma 10.1.13
	The induction principle for acc (§10.3)
	Lemma 10.3.7
	Lemma 10.3.8
	Lemma 10.3.12
	Theorem 10.4.4

	Chapter 11
	The definition of Q (§11.1)
	§11.2.1
	Corollary to Lemma 11.2.2
	Proof of Theorem 11.2.12

	Appendix A

