Lambert W’s Taylor Series

Akiva

The Lambert W function is defined as the inverse of ze*. That is:
y=W(r) < x=ye’

It turns out that this has a nice Taylor series:

We will derive this, and we’ll take a slightly unusual path to get there.

Taylor’s theorem is:
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I could use this theorem directly on W(z), but that involves differentiating W (zx) a
bunch of times and seeing if I can find a pattern. That’s really messy. I’ll use a more
interesting approach.

In fact, I’ll only need to use this theorem on polynomials. This avoids issues of conver-
gence; for polynomials, the Taylor series is really a finite sum, because if k is large enough,
then f(*) = 0. (Also, Taylor’s theorem is much easier to prove for polynomials than for
general functions.)

Let’s make a useful change of notation. Instead of writing f’ for the derivative of f,
let’s write Df. (Here, D is an operator — it turns a function into a function.) Additionally,
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m is such an important polynomial that I'll give it a special name: di(z) := e Note
that: :

e Ddy = dj—1

e di(0) =0 (when k # 0)
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dy, is called the basic sequence of D.
Our revised Taylor series looks like:

f@)=> (D"f)(a) dp(z — a)
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We can add together operators. For example, D 4 D? is the operator such that (D +
D?)f = f'+ f". I is the identity operator, i.e., that I f = f for every function f. We have
DY =1.

In addition, we can do weird things such as find e — since e* = Y reo %, we can define
eP to mean Y 70, %f.

Define the operator E as follows: (Ef)(z) = f(z+1). That is, E shifts f over one. More
generally, (E*f)(z) = f(x + a). A nice fact is that DE = ED (that is, they commute).
We will now prove that E = eP.

Start with the Taylor series, and substitute z — = 4+ 1 and a — x:
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Define the Abel operator A := DE. That is, (Af)(z) = f'(z + 1). By the above
theorem, A = DeP. We have A written in terms of D. Can we express D in terms of A?
That is, can we find the coefficients ¢, of the series:
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And this is where this ties into the Lambert W function. Since W (z) is the inverse of
re®, and A = DeP | we have D = W (A). That means the same coefficients ¢, will be the
coefficients of the series for W (x).



This is a variant of Taylor’s theorem, and is equally true:

f(x) = (A*f)(a) ax(z - a)
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where ay, is the basic sequence for A — that is, Aay = ag—_1, ax(0) = 0 when k£ # 0, and
ap = 1. We will figure out what the ay are later. Basically, this is the Taylor sequence
with all of the Ds replaced by As. Again, f only needs to be a polynomial. (The proof of
this is similar to how you’d prove Taylor’s theorem for polynomials.)

Differentiating:

(Df) (@) = (A*f)(a) aj(z — a)
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Set a = z:

(Df)(@) =D _(A*f)(x) a;,(0)
k=0

(Df)(x) = a(0) (A*f)(x)
k=0

D = i ay.(0)A*
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This means that the coefficients of the Lambert W function are precisely a},(0), where
ay, is the basic sequence of A !

So, what are the a;? Let’s list the first few and see if we find a pattern. Remember
that A = DE. Also, Aay = ai_1, ar(0) =0 when k # 0, and ag = 1. So:

ap(z) =1

aj(z)=(r—1)+1
I’'m writing this in a slightly weird way. Think of it as me doing A backwards, by

integrating ap and then shifting it. We have Aa; = ag. The 1 is to ensure that
aj (O) =0.
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It’s easy to check that Aas = a;. We have az(0) = % —2=0.
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We check that ag(0) = —
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Generalizing the pattern, we have:

(x — k)k (x — k‘)k_l
Mo )

ap(x) =

(except for k = 0, where ar = 1). The three conditions for aj are satisfied, as you can
check.
Now, all we need to do is compute a} (0):
(x — k)1 (- k)k2

alw) = k=Dl k=2
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(except for k = 0, where a}(0) = 0).
That means that, by our above result:

and, thus:

And we are done.



