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1 Problem 1

First we consider random 4 vertices in n-vertices graph. Once one of edges is colored, then the remain
(4
2) − 1 = 5 edges have the probability Pr(Ai) = 2−5 to color to the same color. Where Ai denote the

event that clique i is monochromatic in (n4 ) cliques. Also we define that if clique i is monochromatic then
random variable Ai = 1, otherwise Ai = 0. So E(Ai) = 2−5.
In order to calculate E(

∑
Ai) we yields:

E(
∑

Ai) = (n4 )2−5

Using the Lemma 6.2 we have Pr(
∑
Ai ≤ (n4 )2−5) > 0 So there exist one 2-coloring that has at most

(n4 )2−5 K4 are monochromatic. Color the edge independently and uniformly. Denote X =
∑
Ai. Let

p = Pr(X ≤ (n4 )2−5. Then we have

(n4 )2−5 = E[X]

=
∑

i≤(n4 )2−5

iPr(X = i) +
∑

i≥(n4 )2−5+1

iPr(X = i)

≥ p+ (1− p)(n4 )2−5 + 1

So we have
1

p
≤ (n4 )2−5

Thus, the expected number of samples is at most (n4 )2−5. Testing to see if X ≤ (n4 )2−5 can be done in
O(n4) time. So the algorithm can be done in polynomial time.

2 Problem 2

Consider a graph in Gn,p with p = c lnn
n . Use the second moment method to prove that if c < 1 then, for

any constant ε > 0 and for n sufficiently large, the graph has isolated vertices with probability at least
1− ε.

Solution:

We consider the event Xi denotes that the ith vertex is isolated. So

Xi =

{
1 if vi is isolated
0 otherwise

(1)

Let

X =

n∑
i=1

(1− p)n−1. (2)

so that
E[X] = n(1− p)n−1 (3)
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In order to prove that if c < 1 then, for any constant ε > 0 and for n sufficiently large, the graph has no
isolated vertex with probability at most ε. That means Pr(X = 0) = o(1).
We wish to compute

V ar[x] = V ar[

n∑
i=1

Xi]. (4)

Applying Lemma 6.9, we see that we need to consider the covariance of the Xi.

Cov[XiXj ] = E[XiXj ]− E[Xi]E[Xj ]

= (1− p)2n−3 − (1− p)n−1 ∗ (1− p)n−1

= p(1− p)2n−3

(5)

So
V ar[X] ≤ E[X] +

∑
Cov[XiXj ] = E[X] + o(pn2(1− p)2n−3) (6)

Then

Pr(X = 0) ≤ V ar[X]

E[X]2

=
1

n(1− p)n−1
+

p

1− p

(7)

for p = c lnn
n and c < 1 with n → ∞, Pr(X = 0) → o(1). So the graph has isolated vertices with

probability at least 1− ε.

3 Problem 3

Prove the Asymmetric Lovasz Local Lemma: Let A = {A1, . . . , An} be a set of finite events over a
probability space, and for each 1 ≤ i ≤ n, τ(Ai) ∈ A is such that Ai is mutually independent of all events
not in τ(Ai). If

∑
Aj∈τ(Ai)

Pr(Aj) ≤ 1/4 for all i, then Pr(
∧n
i=1 Āi) ≥

∏n
i=1(1 − 2Pr(Ai)) > 0. [Hint:

let x(Ai) = 2Pr(Ai) and use the general Lovasz Local Lemma.]
Solution:

First we need to prove a lemma that if 0 ≤ ai ≤ 1/2 for all i = 1, 2, . . . , n, then
∏n
i=1(1 − 2ai) ≥

1− 2
∑n
i=1 ai.

Induction for n. When n = 1, the inequality holds obviously. Assume that when n = k, the inequality
holds. Consider the case when n = k + 1,

k+1∏
i=1

(1− 2ai) =

k∏
i=1

(1− 2ai)(1− 2ak+1)

≥ (1− 2

k∑
i=1

ai)(1− 2ak+1)

= 1− 2

k+1∑
i=1

ai + 4

k∑
i=1

aiak+1

≥ 1− 2

k+1∑
i=1

ai

(8)

So the inequality holds.
Using the general Lovasz Local Lemma, we set x(Ai) = 2Pr(Ai). Then

x(Ai)
∏

Aj∈Γ(Ai)

(1− x(Aj)) = 2Pr(Ai)
∏

Aj∈Γ(Ai)

(1− 2Pr(Aj))

≥ 2Pr(Ai)(1− 2
∑

Aj∈Γ(Ai)

Pr(Aj)

≥ 2Pr(Ai)(1− 2 ∗ 1/4)

= Pr(Ai)

(9)

2



So the general Lovasz Local Lemma condition holds. Then we have the result

Pr(

n∧
i=1

Āi) ≥
n∏
i=1

(1− x(Ai))

≥
n∏
i=1

(1− 2Pr(Ai))

> 0.

(10)

4 Problem 4

Given β > 0, a vertex-coloring of a graph G is said to be β-frugal if (i) each pair of adjacent vertices has
different colors, and (ii) no vertex has β neighbors that have the same color.
Prove that if G has maximum degree ∆ ≥ ββ with β ≥ 2, then G has a β-frugal coloring with 16∆1+1/β

colors. [Hint: you may want to define two types of events corresponding to the two conditions of being
β-frugal. Then the result in question 1 can be used.]

Solution:

By the following equation
(∆+1
β ) = (∆

β ) + (∆
β−1) (11)

we can prove that (∆
β ) is monotonically increasing for ∆ when β is given.

Let the number of colors used to β-frugal coloring be N = 16∆1+1/β , and the algorithm assigns each
vertex a uniformly random color.
Now we define two types of events with total number of m+ n, when n is the number of vertices, and m
is the number of edges:

• The pair vertices of ei has the same color;

• The vertex vi has β neighbors that have the same color.

Define di is the degree of vertex i.
For each event Ai in type I,

Pr(Ai) =
1

N
(12)

For each event Ai in type II,

Pr(Ai) = (diβ )(
1

N
)β−1

≤ (∆
β )(

1

N
)β−1

(13)

Consider the number of dependent events of each event in type I. First, each edge connected to the
two vertices in the given edge has an event in type I, whose total number is at most 2(∆?1). Second,
each vertex of the edge has an event in type II, whose total number is exactly 2. Thus, for each event
Ai in type I, ∑

Aj∈Γ(Ai)

Pr(Aj) ≤ 2(∆− 1)
1

N
+ 2(∆

β )(
1

N
)β−1

= 2[(∆− 1)
1

16∆1+1/β
] + (∆

β )(
1

16∆1+1/β
)β−1

≤ 2[
1

16
+ ∆(̇∆− 1) · · · (∆− β + 1)]

(14)

This definition for events is hard to prove. Another proof from Alistair Sinclair is in the last section.

5 Problem 5
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